Lumane le
eX “M?

Humane assessment is a method for making software
engineering decisions.

This document offers examples of how the various facets of
the method works in practice. Specifically, it provides stories
of daily, spike and strategic assessment, and it shows how
integrating custom tools in the development process can lead
to better solutions fast.

All described case studies were solved using the same
techniques and even the technology, namely the Moose
analysis platform which was designed precisely to enable
custom analyses at a low cost. While the technology choice
is important, it is secondary to the idea that assessment is a
discipline that can be served by a small set of tools and
associated skills.

For further information about humane assessment, please
consult the official webpage:
www.humane-assessment.com

© 2011-2017 Tudor Girba
feenk.com

http://www.humane-assessment.com

daily assessment 3
Ensuring a cohesive architecture 4
Driving a clustering migration 7
Ensuring correct database schema generation 9
spike assessment 10
Optimizing a JBoss cache 11
Guarding against a memory leak 15
Identifying tables used by entities 17
What to override? 18
Evaluating the cause of a peak problem 20
Chasing troublesome announcements 22
strategic assessment 24
Recovering data flow mappings to support a strategic
decision 25
Supporting a large performance optimization 27
Evaluating a refactoring path 30
Estimating a strategic model change 32
Checking architectural conformance of an outsourced system
34
tooling buildup 36
Evaluating the splitting of an Angular-based system 37
Browsing a configuration system 41
Supporting multiple assessments of a system written in a
proprietary language 44

Identifying missing translations 49

Heil

assessment

www.humane-assessment.com/guide/daily

http://www.humane-assessment.com/guide/daily

Ensuring a cohesive architecture

A Scrum team was developing a Java-based product. Although the
team was pressured to release within a space of two months, the
developers decided to adopt the daily assessment process to
control the architecture.

The teams started by drawing the architecture. The pictures were
clean and they revealed clear rules that should be followed. Here
are some examples:

Client
i
Module A Module B Module ... Service ——> API
‘—¢ H
Common platform Data Access Object
i
Technical platform Entity

Detecting architectural inconsistencies relies on mapping the
conceptual components on the actual implementation. In practice,
this turned out to be difficult as there was no easy way to locate
the presented concepts such as Module A, or all the API classes
belonging to that module.

Suddenly, rules that were supposed to be easy to express became
expensive to implement. The root problem came from a lack of
structure in the code. Thus, we decided to reshape the structure,
and to introduce tighter naming conventions.

We started from the package structure. To obtain a convention
accepted by everyone, we created a visual map of all packages in
the system, and in a succession of blitz-workshops, we asked the
teams to use color coding to identify what dimensions they would
like to see captured in the names of packages. After a couple of
hours of effort, we obtained a scheme similar to the one depicted
below.

com company

The next step was to encode the convention in a set of rules. The
diagram essentially shows a grammar, thus, the easiest way to
encode it was to produce a small parser based on it, and to require
the fully qualified of all packages to be parseable by the parser.
Shortly afterwards, the rule was integrated in the continuous
integration and through the daily assessment process we
reshaped the package organization.

Once packages got ordered, we could install more strict rules at
class level. For example, all public service interfaces had to be
placed in the API package, or all classes annotated with @Entity
had to be in the entity package. The latter example, was detected
using the following checker:

model allClasses select: [:each |

(each isAnnotatedWith: ‘Entity’) and: [
("*::entity::x' match: each mooseName) not]]

After less than a month of work, the code landscape had
underwent a dramatic transformation. The team was happy, yet we
were not through: we had to still check the architectural
constraints. At this point, the detections became as simple as:
model allClasses select: [:each |

each isCommon and: [
each providerClasses anySatisfy: #isModule]]

As expected, we identified several violations, some of which would
have led to problematic deployments. The critical ones were fixed

—— module

product +———— common

utils

srv

ui

srv

ui

api

dao

entity

api

dao

entity

fast, while the rest were marked as exceptions and dealt with in
the following months after the release. But, the most important
gain was that further rules could be added easily precisely
because all components could be easily located.

x - 0O P Report
Index Wrong @Interceptors in non remote implementations
v Server Group (4) (FAMIXClassGroup) v (FAMIXClass)
No @Interceptors in remote implementation = = 2 Jp Il '3‘ E 0 D E 0]
Wrong @Interceptors in non remote implem a
Services annotation by Remote but not with a
EntitvManage _ -— -
Not allowed usages of EntityManager - @Stateless(name =
Entities that are not Serializable a

Embeddeable not Serializable
Not allowed calls to BussinesContext.dispos

Non-serializable classes which have a seriali @Interceptors({ ExceptionHand|erinterceptor.class })
Serializable inner classes public class
EJB annotations without defined mappedNz extends implements

Stateless session beans with instance variab

{

Session Beans that are not clustered
Entities with final methods
EJB without public no arg constructor

Every no @Remote implementation should NOT be
annotated with

ublic
@Interceptors(ExceptionHandlerInterceptor.class) P

Musreinmintanian tinnChaneaCiatarallCanirall

Even though the surgery was large involving significant renaming
operations that affected also the structure in the version control,
the team met the deadline without doing any overtime. This stands
as evidence for how code cleaning is often not expensive once the
problem is explicit and controllable.

But, that is not all either. For a long time, the naming convention
was held tight and the small errors were corrected promptly.
However, a couple of years after the initial schema choice, a large
amount of code was introduced that did not comply with the
defined naming rule. As a consequence, several other architectural
rules got broken, too. The problem was immediately discussed in
the daily assessment stand-up, and the team identified that the
cause was the introduction of a module working with web services.
Given that the original system did not work with web services, the
specific requirements were not taken into account. Thus, it became
clear that the situation needed to be re-assessed and a deeper
discussion and rethinking of the structure followed.

A good naming convention is not only useful for defining further
analyses, but it also is a catalyzer for communication as it helps
capture the intention of otherwise abstract entities.

Driving a clustering migration

The company wanted to migrate one of their system to a clustering
solution that was based on JBoss features. This feature was
considered to have strategic importance and the customers
expected to get it running within a couple of months.

To make use of JBoss clustering, the server has to be properly
configured. Given that this is not an easy task, and the team had
little experience with it, we needed to ensure that the settings were
correct. To achieve a better understanding, we created a
simulation environment:

- We set up a cluster with several instances of JBoss running,

- We created programmatically multiple clients that connected to
a set of services served by the cluster,

- We made sure that we spawn enough client programs to get at
least one connection to each cluster node,

. We then took a one node down, and

« We checked that all clients continued to be served.

Having this environment, allowed us to iterate over the
assumptions very fast and within the space of a few days, we
ensured that we got all settings right. The conclusion of the
experiment, was that the only thing left to ensure was that all
remote service classes in the system needed to be annotated with
@Clustered. The template looked something like:
@Remote(IService.class)
@Stateless(name = "XYZService",

mappedName = "ejb/service/XYZService")
@Interceptors({ ExceptionHandlerInterceptor.class,

MethodTracelLogInterceptor.class })

@Clustered
public class XYZService implements IService { ... }

To ensure that all services did follow this design, we created a
checker. Essentially, the checker listed all classes annotated with
@Remote and that were not annotated with @Clustered:

model allClasses select: [:each |

(each isAnnotatedWith: 'Remote') and: [
(each isAnnotatedWith: 'Clustered') not 1]

The system had more than 60 such services that were developed
by three teams. To ensure that all services get annotated, we
integrated the checker in the continuous integration and monitored

it through the daily assessment process. While at first adding the
annotation appeared to be a straightforward activity, we discovered
along the way that some services should not be clustered because
they had other node specific contracts (e.g., writing a report file
and saving it to disk). In these cases, we created another checker
that explicitly forbade those services to be clustered. All teams
worked through each of the services, and after a short while, all of
them got annotated.

At this point, we still had to ensure that our initial assumption held
true also for a large system with many services. To check this
assumption, we wanted to repeat the original simulation
experiment with the real system in place. In order for us to do that,
we needed to ensure that we had samplers for each service class.

To achieve this, we again resorted to a Moose checker. This time,
the checker identified all clustered services that were not exercised
by at least one sampler class (we used a performance
infrastructure to simulate clients, and thus we knew that samplers
had to be in the performance path):
model allClasses select: [:each |

(each isAnnotatedWith: #Remote) and:

[(each isAnnotatedWith: #Clustered) and:

[(each superclassHierarchy flatCollect:

#clientClasses) noneSatisfy: [:client |
client disInPerformanceTestPath]]]1]]

We integrated this checker in the continuous integration and
worked through the to do list through the daily assessment
process. After a short while all relevant services had at least one
sampler, and we carried on with our experiment. The experiment
showed that our assumption was correct and that the system was
properly clustered.

All'in all, the whole effort amounted to about ten person-days
distributed in tiny work chunks among the developers. The cost
was small compared with how reliable the deployment of the new

version happened.

Ensuring correct database schema
generation

The team developed a Java enterprise system, and the
persistence was developed using the Java Persistency API. For
example, a typical one to many relationship looked as depicted
below:

@OneToMany
public Set<SomeRecord> getRecords() {...}

At some point, the team decided that it would be useful, at least for
development purposes, to generate the schema out of the code
and reinstall in a DB. All went well, but at some point while doing
performance analysis, the team noticed that when generating the
schema out of the standard annotations, the foreign keys were not
present in the case of one-to-many relationships.

This was cumbersome. On the one hand it was very handy to be
able to replace the schema at any point, on the other hand, the
schema was incomplete. To solve the issue, every @OneToMany
annotation had to be augmented by a @ForeignKey annotation.
For example, the code above should have looked like:
@OneToMany

@ForeignKey (name="FOREIGN_KEY” dinverseName="PRIMARY_KEY”)
public Set<SomeRecord> getRecords() {...}

To ensure that no foreign key got forgotten, the team decided to

check for the pattern continuously. The detection rule turned out to

be rather simple:

(model allAnnotationTypes entityNamed: #’javax::persistence::0OneToMany’)

annotatedEntities select: [:each |
(each isAnnotatedWith: ‘ForeignKey’) not]

Developers have a stake in the system, too, and their interests
should be served as well.

spike

sessment

www.humane-assessment.com/guide/spike

10

http://www.humane-assessment.com/guide/spike

Optimizing a JBoss cache

A major problem appeared after launching a system into
production: the end users reported that the system was sometimes
very slow. Because this was a critical system, the problem was
considered of crucial importance.

To identify the problem, we started by reproducing it in
production. It was particularly interesting that the slowness
occurred only sometimes, and not all the time. After instrumenting
the system locally, we saw that some parts of the executed code
were related to a cache. This was consistent with the original
reports and we deemed it to be a relevant path of investigation.

The problem with working on a cache is that its behavior depends
highly on the usage. Simply working on the cache locally would not
guarantee success in production. We needed to exercise our
system with real user activity. However, given how critical the
system was, we were not allowed to deploy experimental solutions
in production.

However, the production system had a strong logging
infrastructure that logged all cache requests and the associated
hits and misses. An excerpt from the large log file could look like:

2012-03-13 16:10:56,876 TRACE CachingDelegate: Cache hit /service/Region
QueryTO [depth=-1, parentDepth=1, namespace=Region, regioncode=IACA,
itemcodes=[APA4725090], codesystem=, elementkind=ITEM,
descriptionIncluded=false, validityTestMode=false] hash=-742458864

2012-03-13 16:10:58,470 TRACE CachingDelegate: Cache MISS /service/Region
QueryTO [depth=1, parentDepth=2, namespace=Region, regioncode=Structure,
itemcodes=[], codesystem=, elementkind=ITEM, descriptionIncluded=false,
validityTestMode=false] hash=2003270021

2012-03-13 16:10:58,563 INFO ScriptCalls: ScriptCall called with Parameter:
namespace[nnn;Core]

2012-03-13 16:10:58,798 INFO ActionService: getActionsByDate: patId=8909580,
caselId=3807672, from=Wed Dec 21 00:00:00 CET 2011

2012-03-13 16:10:58,923 TRACE CachingDelegate: Cache hit /service/Region
AnotherQueryTO [regioncode=null, itemCodes=[], namespace=Region,
codeSystem=domain.entry, elementKind=Region, validityDate=Tue Mar 13 00:00:00
CET 2012, descriptionIncluded=false, locale=de_CH, validityTestMode=false]
hash=570633577

2012-03-13 16:10:59,266 TRACE CachingDelegate: Cache MISS /service/
AnotherRegion QueryTO [depth=1, parentDepth=-1, namespace=AnotherRegion,
regioncode=630, itemcodes=[I_23451], codesystem=, elementkind=ITEM,
descriptionIncluded=false, validityTestMode=false] hash=-1116635756

In these log files, we could see which cache request was a hit and
which one was a miss, and we could see for each request the

11

corresponding parameters. Using this information, we could plot
the cache hit ratio over time.

We built a parser that extracted the cache information and built a
browser featuring charts and querying possibilities. The chart
confirmed the original suspicion that the cache behaves both
poorly (with a hit ratio of under 60%), and randomly (sometimes a
high ratio, sometimes a very low one).

85

!

75 _//_\
72 4

68 |

65

62 | \‘

593 e

537

v 4 \\/“mq

39 \

36 4 \/ \
27 4

average

Given that we could not work directly on the production system, we
installed a simulation environment that mimicked user activity:

- We copied the production database in a separate installation,
« We extracted the cache related entries from the large log file,

« We created a client that replayed the cache requests at time
intervals specified in the original log (we actually used a fast
forward factor of 20x to speedup the experiment), and

- We ensured the accuracy of the experiment by comparing the
chart corresponding to the new log output with the original
chart.

Once we obtained a simulation environment, we went deeper in
the code. After some code exploration, we noticed that there
should be two different cache zones. Indeed, when looking in the
original log, we identified that there were two types of requests
with different parameters. Because our tool allowed us to query the
data interactively, we could easily split the logs and plot each part
separately.

é/ﬂMhAAh n/w A

75
72 71
66
63 63
: /\ /\ .

: ANANAA

zgv\/ UARARUARALI S

average

We observed that the two parts were not behaving the same way.
While the first one was slow, it was predictable, and in fact, it was
not affecting the use cases reported as being slow. The slowness
and randomness came from the second zone in the cache.

At this point, we knew where to focus in the code, and not long
afterwards we identified the cause: because of a coding mistake,
the whole cache was emptied instead of only throwing away the
least used entries. The modification was rather easy, and after
replaying the experiment, we got a much better performance.

100

A

fm A
85] \/\/
82
79
TER

37

Ho AN~
L

N \/\ average

The overall effort took somewhere around five person-days. At the
end, we had a solution and due to the systematic assessment, we
were confident that the solution would solve the end user problem.
Once we deployed it, we learnt that we were indeed correct.

This was possible due to the systematic assessment approach.
First, by setting up a simulation environment we could test and
compare problems and solutions Second, using a visualization
helped us to understand the dynamic nature of the cache. Third,
the interactive capabilities of the browser allowed us to query the
log entries in several ways until we found a revealing split.

x -0 Cache Log Analyzer a
Log files i O
afterafixlog a PXCacheLog (a PX.Log)
aftermaliidog State | Hits | Methods -
originallog
lay
replaylog ok
973 A ot ,,4""‘\1\
941 \ /
. ~ N\ N\~ \ A
E NN \/ \ A
873 A o 1V il
84] 74 S W A Vo \ average
81 3 / \V 4 \I f \ il ?
i / \ | ;
/ 1 \/ \
1 y
72 4 {‘ \/

67 4

All in all, the investment of building tools paid off quickly because it
helped us check our assumptions against the data in almost real

time.

Guarding against a memory leak

In JBoss 5 there exists a bug in the implementation of the memory
pools used for the allocation of beans. However, the bug is only
apparent in special circumstances when (1) the system has cyclic
dependencies between beans, and (2) the pool is smaller than the
maximum amount of beans wanted at a time.

In other words, if you have cyclic dependencies between beans
you are susceptible to experience memory leaks when using
JBoss 5. The team discovered this issue after a painful couple of
months of chasing the problem in a production system that was
accumulating memory leaks. They found that the issue was
caused by circular dependencies between two beans.

The code looked like this:

@Remote(...)
@Stateless(...)
public class XYZService {
@EJB
private ABCService abc;

}

@Remote(...)
@Stateless(...)
public class ABCService {
@EJB
private XYZService xyz;

}

One way to guard against the bug is to avoid circular
dependencies completely. In our case, breaking the problematic
cycle was not possible in the short term because the cost was too
high. However, we still could guard against the bug by leveraging a
technical loophole in JBoss 5: setting the beans pool size to be
larger than the amount of beans used at a time prevented the
problem. However, to find out what this right size is, we needed to
form an idea of the runtime scenarios, and the first step in this
direction is to know what cycles between beans there are
throughout the whole system.

The detection of these cycles might seem less straightforward
because the cycle does not appear explicitly in the code given that
both references point to the interfaces, and not to the
implementation. The actual cycle only happens at runtime via an
injection mechanism.

Thus, to detect our problem statically, we have to manufacture the
dependency, and with the right tools, the detection became
inexpensive:
(model allClasses select: #isRemote)

cyclesToAll: [:each |

each attributes flatCollectAsSet: [:attribute |
attribute declaredType withSubclassHierarchy]1]]

The expression gets all the beans from the system, and for each of
these will look at the possible cycles induced by the types of the
attributes to all the sub types of the declared type.

Using this checker, we identified another cycle that was originally
not detected. This second cycle was easy to refactor and was
consequently fixed immediately. For the second cycle, we ensured
that the pools were large enough, and we marked the issue as a
temporary exception to the rule.

The checker was integrated in the continuous integration process
to ensure that nobody introduces more such cycles. Later, when
the project pressure allowed for it, the problematic cycle was
removed as well.

|dentifying tables used by entities

While going through the logs of a production system, the system
administrator observed some suspicious InvalidStateException
errors coming from hibernate. The exceptions looked like:

org.hibernate.validator.InvalidStateException:
validation failed for: com.example.model.Concept

One of the assumptions was that these errors were due to some
database problems. To check the assumption, he needed to know
which tables were involved in the errors. The problem was that the
logs only provided the names of the Java classes without the
names of the tables involved in the mapping. Thus, one thing we
learnt is that we needed to extend the logging infrastructure to
export the table names as well.

However, this still did not solve the existing problem because the
system was already in production and could not be changed easily.
To dig into the problem, he would have needed to open Eclipse,
search for the involved classes and identify the associated tables.
The Java code associated with the error looked like a regular
hibernate annotation:

Q@Entity

@Table(name="CONCEPT")
public class Concept {...}

In our example, com.example.model.Concept is associated
with the CONCEPT table. However, given that he did not have
access to such an environment, he was stuck. He wished of
having a simple file with the mapping of all classes. It turned out
that the problem is straightforward with Moose. The below
script retrieves the mapping and puts it in a simple tab separated
file that can be viewed with Excel:
model allClasses do: [:each |
(each isAnnotatedWith: #Table) ifTrue: [
Transcript
show: each mooseName;
tab;
show: ((each annotationInstances detect: [:ann | ann name = #Table])
attributes detect: [:attr | attr name = #name]) value;

cr] 1]

The whole cycle, from problem identification to obtaining the
mapping, took somewhere around 15 minutes. After this small
investment, the original problem became easily approachable.

What to override?

The project consisted in integrating two existing legacy systems,
SystemX and SystemY. The connection point happened through
an interface from SystemX consisting of more than a hundred
methods that the latter system had to implement.

SystemX
Interface
serviceA()
serviceB()
ClientX j
SystemY
Implementation
ComponentA ForClientX ComponentB

service???()

Given that the runtime scenario only involved a limited set of
usages, it was enough to provide real implementations only for a
handful of methods. This limited the cost of the integration
significantly.

The team still needed to know precisely which methods had to be
implemented. The first strategy employed by the team was to

exercise the two systems with various functional tests, and check

for exceptions. However, this provided no guarantee that no

problems will appear in production. To answer the question

completely, we queried the interface usages from ClientX:

(model allClasses entityNamed: ‘Interface’) methods select: [:each |

each clientTypes anySatisfy: [:client |
client name = ‘ClientX’]]

The analysis revealed that all methods were already properly
implemented. Yet, this time there was certainty.

Later, a new version of SystemX was released and had to be
integrated. Based on the already existing analysis, we discovered
a missing method that was not documented and would have easily
gone undetected.

With the new release, while testing the new version, the team also
noticed a new exception occurring. At a closer look it seemed that
new code contracts were introduced in other parts of the code
together with new functionalities. Starting from the known problem,
we reverse engineered the code and built a new set of rules.
Running those rules revealed several more overriding needs. The
complete effort was measured in a few hours.

Not all problems can be easily tested functionally. It is often
significantly more effective to check them statically.

Evaluating the cause of a peak problem

The users of a mission critical hospital system reported that the
behavior of the system got significantly slower, close to unusable,
during 3 and 4 PM. The issue transformed into a crisis, received
immediate top management attention and solving it was given top
priority.

After a brief evaluation the system administrators concurred that
the issue is due to a logical error in the code, and handed over the
problem to developers. Looking closer at the situation, something
did not add up, and we went back to the system administrators to
investigate further. They explained that the problem was quite
obvious. They showed us the log files of the production installation,
and indeed they showed that during 3 and 4 PM, thousands of
exceptions of a certain kind of SomeStrangeError were thrown.
They concluded that this is abnormal as they did not encountered
these exceptions on any other installation, and hence they deemed
it to be the root of the performance peak problem.

At a closer investigation, the SomeStrangeError came from the
underlying middleware and it was unlikely to have anything to do
with performance. This hypothesis was confirmed by the support
from the middleware supplier. Knowing this, we investigated the
log files ourselves, only this time we parsed them and extracted all
exceptions reported by the four server nodes and plotted them on
a chart as seen below.

Errors
1200.0

800.0 'Y

All errors from the log files. Each circle denotes 15 minutes worth of errors.
The color of the circle denotes a distinct server node.

20

Indeed, during 3 and 4 PM there was a spike in errors. However,
given that some of the reported exceptions were of other nature,
we further trimmed the chart to show only the exceptions of the
SomeStrangeError kind.

Errors count
750.0

‘.. ®
‘ (]
500.0 PS ,. ad ©
"' 5 ’QJ..

The same chart as above showing only the problematic SomeStrangeError.

The picture reveals a different situation. While it is true that the
spike in errors correlated with the performance slowdown during 3
and 4 PM, at the same time there was another spike of errors at a
later time in the same day that was not correlated with a
slowdown. As a consequence, it was unlikely that the errors were
the cause of the slowdown.

Our assessment took a couple of hours, and we used this chart to
argue our case with the management and system administrators.
In the end, the cause of the performance slowdown turned out to
be an undocumented backup job that was triggered between 3 and
4 PM.

Taking a step back, it is certainly true that the technical state of our
production system was far from ideal, but the current problem was
not due to that state. When the system administrators looked at
the logs, they used a text editor which tends to focus the attention
on the details. However, the real pattern only revealed itself when
looked at a larger granular level through dedicated tools that
allowed us to quickly parse, trim, and visualize the data.

21

Chasing troublesome announcements

A while ago, we got a major problem in the browsing engine of
Moose. The engine was designed to help developers build
browsers easily. Once the model of a browser was defined, the
renderer produced the actual user interface that had to be kept in
sync with the conceptual model. The problem was that in certain
cases, the renderer did not display correct values.

We knew that the problem was related to the communication
mechanism between the model and the actual user interface. To
handle the interaction between the objects from the browser model
and the actual user interface widgets, the engine used
announcements objects to implement an observer pattern.

Given that the communication did not happen via direct calls, it
was difficult to get the proper overview by using only the code
browser. Furthermore, the engine relies on a prototype-based
design and it deep copies its model objects every time there is a
significant interaction. Thus, a large part of the behavior is only to
be understood at the objects level, rather than at the class level.

After several dozen days of investigations involving several
people, we got to capture the situation in a testable scenario, but
even so, we could not find the cause. There were simply too many
objects around that obfuscated the situation.

At this point we changed the debugging strategy and built a
visualization to help us understand these objects and their
connections. On the one hand, we needed to visualize the tree
structure of the model. This is depicted as a tree of boxes on the
left hand side in the picture below. On the other hand, we wanted
to see the connections between each model object and the
corresponding rendering object. The connections are shown with
red lines leading to the rendering objects on the right.

The picture revealed the problem nicely: there were several
objects from the model that were linked to the same rendering
object. For example, the second MorphicPane from the top right
had two red edges connected to it. There should have been
exactly one such edge for each object on the right. This meant that
the problem was certainly related to how announcements were
copied.

Announced objects

root
entity MorphicPane
selection fMorphlcPane

MorphicPane
/ ?J-‘Iorphlcpane
| MorphicFixedPanesFinder

-MorphicWindow

Composite

Finder

1
entity Morphiclist
r
selection
MorphicText

Cgmposite LMorphicTabulator
Tabulator. a fo /;/

v
chntgnt details eoptent | fdetany

entlty/ ertity | #ntity entity
] o L~ 2
selection selectionint€rval| |seleetion
selectionPath||text

Composite Composite Composgite Composite

List. Text List

the initial visualization how the objects to the right are connected to more objects from the left

This reduced the scope of search to a set of about 10 methods.
After a brief inspection, the solution boiled down to a one line fix.

Announced objects

root
entity MorphicPane
selection J_J-|orph|cPane

| MorphicPane
Composite

MorphicPane

Finder MorphicPane

T MorphicPane

englty MorphicText
selection
MorphiclList
Cofmposite Co MorphicWindow
MorphicFixedPanesFinder
Tabulator
MorphicTabulator
contgnt datails cofik€nt details] rMorphicTabulator

entity

| MorphicList

selectionPath||text

entlt-,'/ ,iphf',' tity,
| yﬁ L~
selection selectlonl}pA seléction

Composite omposite, Composite C

Text List

the visualization that showed the effect of the fix

Not all problems can be captured in a useful manner from a
functional point of view. Even if we had a failing test, we still could
not get to the root of the problem. In our case, employing a data-
oriented route helped us identify the problem much faster.

23

S 1‘7‘&"/’?% Jl[C

assessm

www.humane-assessment.com/guide/strategic

24

http://www.humane-assessment.com/guide/strategic

Recovering data flow mappings to support a
strategic decision

The client was developing a long lived, difficult to understand,
embedded system that was already deployed on many remote
sensors. The system had an interface that allowed administrators
to modify the system configuration remotely for each sensor, but
this interface only worked live, and the client wanted to add an
offline mode as well.

The team identified two possible solutions, and the management
was faced with a strategic decision:

1. Virtualize the whole system and build an interface on top of it
that treated it like a black box, or

2. Reverse engineer the system to build upon the existing backup
mechanism and use it for administrative purposes as well.

Option 1 was cheaper in the short run, but it was not desired due
to lags and brittleness. Option 2 was only possible if the backup
model could be easily mapped on the interface model.

We were approached to help with the decision. As the key
decisional element was related to the simplicity of the mapping, we
focused on recovering it from the existing code.

The first step was to choose a sizable subsystem as a concrete
example. After several quick interviews and browsing of the code,
we identified that all classes representing the interface model
inherited from a OuterBase class, and the backup classes
inherited from an InnerBase class.

To find out where the actual transformation happens, we searched
for the methods that received an OuterBase class as a parameter
and create an InnerBase class. We quickly got to a few places, all
of them inheriting from a MapperBase class. We double checked
that all subclasses indeed offered similar mappings both through
queries and by going through the comments.

At this point, in order to find patterns, we identified that we would
benefit from a dedicated browser that would focus on the mappers
and show the related inner and outer classes.

x -0 Mappers Browser v

Mappers Outers

Inners

Others

Methods

a dedicated browser for investigating possible mappings

Using this browser, we could quickly traverse many mappers and
identify several mapping heuristics. To help the team understand
the mappings, we encoded the heuristics into an interactive map.

x -0 Sure Mappers Map o~

Outers Mappers Inners 1

[[e |
[x 3
[

}
}
}

LOMI_PortCtgm (Type)

a dedicated interactive visualization showing the mappers
and the corresponding inner and outer concepts

This map showed that multiple outer concepts map on the same
inner object, and this implied that it would require a significant work
to build the original requirement. Finally, option 1 was chosen. The
overall assessment effort was measured in a few days, and as a
result, a strategic decisions This time, based on facts.

26

Supporting a large performance optimization

The client had a critical problem: a key enterprise system was
slow. This caused great havoc among end-users, and the whole
project was threatened with cancellation. This problem got into the
attention of top management, and a strategic project was started.

We were appointed to lead the project. The first priority was to
clarify the goal. All the stakeholders set at the table and agree on
an initial set of use cases that should be made faster.

The only reliable way to make a system faster is by means of
measurements. Once the use cases were established, we setup to
measure the performance. The system was based on a
combination of Java, Delphi and a proprietary scripting language,
and a significant part of the initial problems seemed to be located
at the interaction between the Delphi and the scripting language.
The problem was that there existed no infrastructure for exactly
addressing this contextual situation.

Thus, we setup to build a tool that would enable us to measure
reliably. Given the heterogeneity of the technology, we needed a
way to collect the dynamic measurements. This being a long lived
enterprise system, we noticed that it came with a strong logging
infrastructure. We decided to use it as a basis for data collection:

« We extended the logging infrastructure to handle multiple
sources, and

- We introduced in various engines logging statement holding
measurement information.

Once we had a log file with detailed measurement information, we
built an importer that extracted the execution model and integrated
it in a custom browser. Because we did not know where exactly the
problems can come from, at first, we built a tool that presented
highly detailed information. In particular, it linked the static model
of the code with the dynamic information gathered from the log.
This way we could easily query various patterns.

This first exercise required approximately 20 person-days mostly
due to the variability present in the log files and due to ensuring
accuracy of measurements. Once we had a first version of the tool,
we managed to identify several issues within a few hours.

-0 Traces overview

Trace browser
03
Scripts

Script Local duration Total duration Activations

tial_postfix

x

T

T

T

T
106
T07 _initial
T07
T

T

T

T

T

Al Script source SQL

0 Execselect (5636)

ExecSelect

During this initial phase, we noticed that comparing before and
after measurements is key to providing quick feedback. However,
while our tool was highly detailed, it was not fast enough mainly
due to the static analysis.

Thus, we reshaped the tool to only focus on the dynamic part and
be able to analyze large log files within seconds. Given that the
original infrastructure needed to parse the log files was in place,
reshaping the tool took approximately two days.

As in any project that requires strategic decisions, the distillation of
the technical results to non-technical people is critical to ensure
good decisions. In our case, we presented a before and after
measurements to show that we can reach optimizations of up to
factor 10. This led to management confidence and to the
expansion of the project to improve further use cases.

Some problems, such as a poor SQL statement, were easily
solvable, but others required more domain knowledge to
reorganize the code but still keep the same functionality. To
address this issue, we brought in the team multiple developers as
required by the tackled use cases. Often they would join the team
for only one or two days.

The tool was crucial in getting this process to work. The tool was
both simple to use and presented enough contextual information

that developers had a high rate of managing to solve the issue in a
short amount of time.

To make the most of the tool, we continuously evolved it with
detections capturing patterns that we already fixed. For example,
we noticed at some point that it is useful to provide a split of the
SQL queries by the affected table, and we built it in. Or we saw
that we often need to search for textual patterns in the queries,
and we built it in.

In total, we approached more than 40 use cases and we involved a
total of 10 developers over a period of two months. The project
was considered a success, and it essentially took four months less
than the original estimation.

x -0 PX Log Driller

Log files O i Scripts ~ Script activations = Client SQLs

1250 J-ocal duration (ms)

T30.40
T30.41

Evaluating a refactoring path

This is a story of finding a refactoring path to split a large class of
almost 1000 methods that was central to the user interface
framework. The class was responsible for handling the theming of
widgets. The problem was that adding new features to the theming
behavior was close to impossible. We needed to find a way to split
the class. The question was how to do it and how to be confident
that it is the right path.

To understand the problem, we first took a look inside the class.
One way to split a class, or a module in general, is to identify
cohesive concepts inside. To this end, the visualization below
shows all methods and all their inter-calls. We notice that the
graph is sparsely connected, thus not providing a useful guidance
to find good boundaries for splitting. A similar picture came out also
when taking the attributes of the class into account.

Visualizing the methods inside the class and their inter-calls.
The visualization reveals many unrelated methods.

30

If the internal implementation does not provide meaningful leads,
we have to look at how the class is being used. Thus, the picture
below shows the same methods in gray, but this time also in the
presence of a dozen significant widgets that are using the theming
class denoted with red circles and red edges.

Visualization of the methods of the class in gray and

From this picture, we noticed that the methods