
humane 
assessment

Humane assessment is a method for making software 
engineering decisions.

This document offers examples of how the various facets of 
the method works in practice. Specifically, it provides stories 
of daily, spike and strategic assessment, and it shows how 
integrating custom tools in the development process can lead 
to better solutions fast.

All described case studies were solved using the same 
techniques and even the technology, namely the Moose 
analysis platform which was designed precisely to enable 
custom analyses at a low cost. While the technology choice 
is important, it is secondary to the idea that assessment is a 
discipline that can be served by a small set of tools and 
associated skills.

For further information about humane assessment, please 
consult the official webpage:
www.humane-assessment.com

© 2011-2017 Tudor Gîrba
feenk.com 

by exam
ple

http://www.humane-assessment.com


daily assessment 3
Ensuring a cohesive architecture 4

Driving a clustering migration 7

Ensuring correct database schema generation 9

spike assessment 10
Optimizing a JBoss cache 11

Guarding against a memory leak 15

Identifying tables used by entities 17

What to override? 18

Evaluating the cause of a peak problem 20

Chasing troublesome announcements 22

strategic assessment 24
Recovering data flow mappings to support a strategic 
decision 25

Supporting a large performance optimization 27

Evaluating a refactoring path 30

Estimating a strategic model change 32

Checking architectural conformance of an outsourced system
34

tooling buildup 36
Evaluating the splitting of an Angular-based system 37

Browsing a configuration system 41

Supporting multiple assessments of a system written in a 
proprietary language 44

Identifying missing translations 49

�2



daily 
assessment

www.humane-assessment.com/guide/daily

�3

http://www.humane-assessment.com/guide/daily


Ensuring a cohesive architecture

A Scrum team was developing a Java-based product. Although the 
team was pressured to release within a space of two months, the 
developers decided to adopt the daily assessment process to 
control the architecture.

The teams started by drawing the architecture. The pictures were 
clean and they revealed clear rules that should be followed. Here 
are some examples:

�
initial drawings capturing various facets of the architecture 

Detecting architectural inconsistencies relies on mapping the 
conceptual components on the actual implementation. In practice, 
this turned out to be difficult as there was no easy way to locate 
the presented concepts such as Module A, or all the API classes 
belonging to that module.

Suddenly, rules that were supposed to be easy to express became 
expensive to implement. The root problem came from a lack of 
structure in the code. Thus, we decided to reshape the structure, 
and to introduce tighter naming conventions.

We started from the package structure. To obtain a convention 
accepted by everyone, we created a visual map of all packages in 
the system, and in a succession of blitz-workshops, we asked the 
teams to use color coding to identify what dimensions they would 
like to see captured in the names of packages. After a couple of 
hours of effort, we obtained a scheme similar to the one depicted 
below.

Module A Module B Module ...

Common platform

Technical platform

Service API

Client

Data Access Object

Entity

�4



�  
the grammar capturing the package naming convention

The next step was to encode the convention in a set of rules. The 
diagram essentially shows a grammar, thus, the easiest way to 
encode it was to produce a small parser based on it, and to require 
the fully qualified of all packages to be parseable by the parser. 
Shortly afterwards, the rule was integrated in the continuous 
integration and through the daily assessment process we 
reshaped the package organization.

Once packages got ordered, we could install more strict rules at 
class level. For example, all public service interfaces had to be 
placed in the API package, or all classes annotated with @Entity 
had to be in the entity package. The latter example, was detected 
using the following checker:

model allClasses select: [:each | 
  (each isAnnotatedWith: ‘Entity’) and: [ 
    ('*::entity::*' match: each mooseName) not ]] 

After less than a month of work, the code landscape had 
underwent a dramatic transformation. The team was happy, yet we 
were not through: we had to still check the architectural 
constraints. At this point, the detections became as simple as: 

model allClasses select: [:each |  
  each isCommon and: [ 
    each providerClasses anySatisfy: #isModule]] 

As expected, we identified several violations, some of which would 
have led to problematic deployments. The critical ones were fixed 

com company product

module

srv

ui

api

dao

entity

common

*

srv

ui *

utils *

api

dao

entity

�5



fast, while the rest were marked as exceptions and dealt with in 
the following months after the release. But, the most important 
gain was that further rules could be added easily precisely 
because all components could be easily located.

�
an interactive report holding various checkers

Even though the surgery was large involving significant renaming 
operations that affected also the structure in the version control, 
the team met the deadline without doing any overtime. This stands 
as evidence for how code cleaning is often not expensive once the 
problem is explicit and controllable.

But, that is not all either. For a long time, the naming convention 
was held tight and the small errors were corrected promptly. 
However, a couple of years after the initial schema choice, a large 
amount of code was introduced that did not comply with the 
defined naming rule. As a consequence, several other architectural 
rules got broken, too. The problem was immediately discussed in 
the daily assessment stand-up, and the team identified that the 
cause was the introduction of a module working with web services. 
Given that the original system did not work with web services, the 
specific requirements were not taken into account. Thus, it became 
clear that the situation needed to be re-assessed and a deeper 
discussion and rethinking of the structure followed.

A good naming convention is not only useful for defining further 
analyses, but it also is a catalyzer for communication as it helps 
capture the intention of otherwise abstract entities.

�6



Driving a clustering migration

The company wanted to migrate one of their system to a clustering 
solution that was based on JBoss features. This feature was 
considered to have strategic importance and the customers 
expected to get it running within a couple of months.

To make use of JBoss clustering, the server has to be properly 
configured. Given that this is not an easy task, and the team had 
little experience with it, we needed to ensure that the settings were 
correct. To achieve a better understanding, we created a 
simulation environment:

• We set up a cluster with several instances of JBoss running,

• We created programmatically multiple clients that connected to 
a set of services served by the cluster,

• We made sure that we spawn enough client programs to get at 
least one connection to each cluster node,

• We then took a one node down, and

• We checked that all clients continued to be served.

Having this environment, allowed us to iterate over the 
assumptions very fast and within the space of a few days, we 
ensured that we got all settings right. The conclusion of the 
experiment, was that the only thing left to ensure was that all 
remote service classes in the system needed to be annotated with 
@Clustered. The template looked something like:

@Remote(IService.class) 
@Stateless(name = "XYZService", 
           mappedName = "ejb/service/XYZService") 
@Interceptors({ ExceptionHandlerInterceptor.class, 
              MethodTraceLogInterceptor.class }) 
@Clustered 
public class XYZService implements IService { ... } 

To ensure that all services did follow this design, we created a 
checker. Essentially, the checker listed all classes annotated with 
@Remote and that were not annotated with @Clustered:

model allClasses select: [ :each | 
   (each isAnnotatedWith: 'Remote') and: [ 
      (each isAnnotatedWith: 'Clustered') not ]] 

The system had more than 60 such services that were developed 
by three teams. To ensure that all services get annotated, we 
integrated the checker in the continuous integration and monitored 

�7



it through the daily assessment process. While at first adding the 
annotation appeared to be a straightforward activity, we discovered 
along the way that some services should not be clustered because 
they had other node specific contracts (e.g., writing a report file 
and saving it to disk). In these cases, we created another checker 
that explicitly forbade those services to be clustered. All teams 
worked through each of the services, and after a short while, all of 
them got annotated.

At this point, we still had to ensure that our initial assumption held 
true also for a large system with many services. To check this 
assumption, we wanted to repeat the original simulation 
experiment with the real system in place. In order for us to do that, 
we needed to ensure that we had samplers for each service class.

To achieve this, we again resorted to a Moose checker. This time, 
the checker identified all clustered services that were not exercised 
by at least one sampler class (we used a performance 
infrastructure to simulate clients, and thus we knew that samplers 
had to be in the performance path):

model allClasses select: [:each | 
  (each isAnnotatedWith: #Remote) and: 
  [(each isAnnotatedWith: #Clustered) and: 
  [(each superclassHierarchy flatCollect: 
    #clientClasses) noneSatisfy: [:client | 
      client isInPerformanceTestPath ]]]]] 

We integrated this checker in the continuous integration and 
worked through the to do list through the daily assessment 
process. After a short while all relevant services had at least one 
sampler, and we carried on with our experiment. The experiment 
showed that our assumption was correct and that the system was 
properly clustered.

All in all, the whole effort amounted to about ten person-days 
distributed in tiny work chunks among the developers. The cost 
was small compared with how reliable the deployment of the new 
version happened.

�8



Ensuring correct database schema 
generation

The team developed a Java enterprise system, and the 
persistence was developed using the Java Persistency API. For 
example, a typical one to many relationship looked as depicted 
below:

@OneToMany 
public Set<SomeRecord> getRecords() {...} 

At some point, the team decided that it would be useful, at least for 
development purposes, to generate the schema out of the code 
and reinstall in a DB. All went well, but at some point while doing 
performance analysis, the team noticed that when generating the 
schema out of the standard annotations, the foreign keys were not 
present in the case of one-to-many relationships.

This was cumbersome. On the one hand it was very handy to be 
able to replace the schema at any point, on the other hand, the 
schema was incomplete. To solve the issue, every @OneToMany 
annotation had to be augmented by a @ForeignKey annotation. 
For example, the code above should have looked like:

@OneToMany 
@ForeignKey(name=”FOREIGN_KEY” inverseName=”PRIMARY_KEY”) 
public Set<SomeRecord> getRecords() {...} 

To ensure that no foreign key got forgotten, the team decided to 
check for the pattern continuously. The detection rule turned out to 
be rather simple:

(model allAnnotationTypes entityNamed: #’javax::persistence::OneToMany’) 
  annotatedEntities select: [:each | 
    (each isAnnotatedWith: ‘ForeignKey’) not ] 

Developers have a stake in the system, too, and their interests 
should be served as well.

�9



spike 
assessment

www.humane-assessment.com/guide/spike 

�10

http://www.humane-assessment.com/guide/spike


Optimizing a JBoss cache

A major problem appeared after launching a system into 
production: the end users reported that the system was sometimes 
very slow. Because this was a critical system, the problem was 
considered of crucial importance.

To identify the problem, we started by reproducing it in 
production. It was particularly interesting that the slowness 
occurred only sometimes, and not all the time. After instrumenting 
the system locally, we saw that some parts of the executed code 
were related to a cache. This was consistent with the original 
reports and we deemed it to be a relevant path of investigation.

The problem with working on a cache is that its behavior depends 
highly on the usage. Simply working on the cache locally would not 
guarantee success in production. We needed to exercise our 
system with real user activity. However, given how critical the 
system was, we were not allowed to deploy experimental solutions 
in production.

However, the production system had a strong logging 
infrastructure that logged all cache requests and the associated 
hits and misses. An excerpt from the large log file could look like:

2012-03-13 16:10:56,876 TRACE  CachingDelegate: Cache hit /service/Region 
QueryTO [depth=-1, parentDepth=1, namespace=Region, regioncode=IACA, 
itemcodes=[APA4725090], codesystem=, elementkind=ITEM, 
descriptionIncluded=false, validityTestMode=false] hash=-742458864 
2012-03-13 16:10:58,470 TRACE  CachingDelegate: Cache MISS /service/Region 
QueryTO [depth=1, parentDepth=2, namespace=Region, regioncode=Structure, 
itemcodes=[], codesystem=, elementkind=ITEM, descriptionIncluded=false, 
validityTestMode=false] hash=2003270021 
2012-03-13 16:10:58,563 INFO   ScriptCalls: ScriptCall called with Parameter: 
namespace[nnn;Core] 
2012-03-13 16:10:58,798 INFO   ActionService: getActionsByDate: patId=8909580, 
caseId=3807672, from=Wed Dec 21 00:00:00 CET 2011 
2012-03-13 16:10:58,923 TRACE  CachingDelegate: Cache hit /service/Region 
AnotherQueryTO [regioncode=null, itemCodes=[], namespace=Region, 
codeSystem=domain.entry, elementKind=Region, validityDate=Tue Mar 13 00:00:00 
CET 2012, descriptionIncluded=false, locale=de_CH, validityTestMode=false] 
hash=570633577 
2012-03-13 16:10:59,266 TRACE  CachingDelegate: Cache MISS /service/
AnotherRegion QueryTO [depth=1, parentDepth=-1, namespace=AnotherRegion, 
regioncode=630, itemcodes=[I_23451], codesystem=, elementkind=ITEM, 
descriptionIncluded=false, validityTestMode=false] hash=-1116635756 

In these log files, we could see which cache request was a hit and 
which one was a miss, and we could see for each request the 

�11



corresponding parameters. Using this information, we could plot 
the cache hit ratio over time.

We built a parser that extracted the cache information and built a 
browser featuring charts and querying possibilities. The chart 
confirmed the original suspicion that the cache behaves both 
poorly (with a hit ratio of under 60%), and randomly (sometimes a 
high ratio, sometimes a very low one).

�
a first plot of the cache hit ratio

Given that we could not work directly on the production system, we 
installed a simulation environment that mimicked user activity:

• We copied the production database in a separate installation,

• We extracted the cache related entries from the large log file,

• We created a client that replayed the cache requests at time 
intervals specified in the original log (we actually used a fast 
forward factor of 20x to speedup the experiment), and

• We ensured the accuracy of the experiment by comparing the 
chart corresponding to the new log output with the original 
chart.

Once we obtained a simulation environment, we went deeper in 
the code. After some code exploration, we noticed that there 
should be two different cache zones. Indeed, when looking in the 
original log, we identified that there were two types of requests 
with different parameters. Because our tool allowed us to query the 
data interactively, we could easily split the logs and plot each part 
separately.

�12



�
revealing the difference between the two zones of the cache

We observed that the two parts were not behaving the same way. 
While the first one was slow, it was predictable, and in fact, it was 
not affecting the use cases reported as being slow. The slowness 
and randomness came from the second zone in the cache.

At this point, we knew where to focus in the code, and not long 
afterwards we identified the cause: because of a coding mistake, 
the whole cache was emptied instead of only throwing away the 
least used entries. The modification was rather easy, and after 
replaying the experiment, we got a much better performance.

�
plotting the hit ratio to confirm the cache improvement 

The overall effort took somewhere around five person-days. At the 
end, we had a solution and due to the systematic assessment, we 
were confident that the solution would solve the end user problem. 
Once we deployed it, we learnt that we were indeed correct.

�13



This was possible due to the systematic assessment approach. 
First, by setting up a simulation environment we could test and 
compare problems and solutions  Second, using a visualization 
helped us to understand the dynamic nature of the cache. Third, 
the interactive capabilities of the browser allowed us to query the 
log entries in several ways until we found a revealing split.

�
a screenshot of the interactive browser used to slice the log entries

All in all, the investment of building tools paid off quickly because it 
helped us check our assumptions against the data in almost real 
time.

�14



Guarding against a memory leak

In JBoss 5 there exists a bug in the implementation of the memory 
pools used for the allocation of beans. However, the bug is only 
apparent in special circumstances when (1) the system has cyclic 
dependencies between beans, and (2) the pool is smaller than the 
maximum amount of beans wanted at a time.

In other words, if you have cyclic dependencies between beans 
you are susceptible to experience memory leaks when using 
JBoss 5. The team discovered this issue after a painful couple of 
months of chasing the problem in a production system that was 
accumulating memory leaks. They found that the issue was 
caused by circular dependencies between two beans.

The code looked like this:

@Remote(...) 
@Stateless(...) 
public class XYZService { 
  @EJB 
  private ABCService abc; 
  ... 
} 

@Remote(...) 
@Stateless(...) 
public class ABCService { 
  @EJB 
  private XYZService xyz; 
  ... 
} 

One way to guard against the bug is to avoid circular 
dependencies completely. In our case, breaking the problematic 
cycle was not possible in the short term because the cost was too 
high. However, we still could guard against the bug by leveraging a 
technical loophole in JBoss 5: setting the beans pool size to be 
larger than the amount of beans used at a time prevented the 
problem. However, to find out what this right size is, we needed to 
form an idea of the runtime scenarios, and the first step in this 
direction is to know what cycles between beans there are 
throughout the whole system.

The detection of these cycles might seem less straightforward 
because the cycle does not appear explicitly in the code given that 
both references point to the interfaces, and not to the 
implementation. The actual cycle only happens at runtime via an 
injection mechanism.

�15



Thus, to detect our problem statically, we have to manufacture the 
dependency, and with the right tools, the detection became 
inexpensive:

(model allClasses select: #isRemote) 
  cyclesToAll: [ :each | 
    each attributes flatCollectAsSet: [ :attribute | 
      attribute declaredType withSubclassHierarchy ]]] 

The expression gets all the beans from the system, and for each of 
these will look at the possible cycles induced by the types of the 
attributes to all the sub types of the declared type.

Using this checker, we identified another cycle that was originally 
not detected. This second cycle was easy to refactor and was 
consequently fixed immediately. For the second cycle, we ensured 
that the pools were large enough, and we marked the issue as a 
temporary exception to the rule.

The checker was integrated in the continuous integration process 
to ensure that nobody introduces more such cycles. Later, when 
the project pressure allowed for it, the problematic cycle was 
removed as well.

�16



Identifying tables used by entities

While going through the logs of a production system, the system 
administrator observed some suspicious InvalidStateException 
errors coming from hibernate. The exceptions looked like:

org.hibernate.validator.InvalidStateException:  
     validation failed for: com.example.model.Concept 
     ... 

One of the assumptions was that these errors were due to some 
database problems. To check the assumption, he needed to know 
which tables were involved in the errors. The problem was that the 
logs only provided the names of the Java classes without the 
names of the tables involved in the mapping. Thus, one thing we 
learnt is that we needed to extend the logging infrastructure to 
export the table names as well.

However, this still did not solve the existing problem because the 
system was already in production and could not be changed easily. 
To dig into the problem, he would have needed to open Eclipse, 
search for the involved classes and identify the associated tables. 
The Java code associated with the error looked like a regular 
hibernate annotation:

@Entity 
@Table(name="CONCEPT") 
public class Concept {...} 

In our example, com.example.model.Concept is associated 
with the CONCEPT table. However, given that he did not have 
access to such an environment, he was stuck. He wished of 
having a simple file with the mapping of all classes. It turned out 
that the problem is straightforward with Moose. The below 
script retrieves the mapping and puts it in a simple tab separated 
file that can be viewed with Excel:

model allClasses do: [ :each | 
   (each isAnnotatedWith: #Table) ifTrue: [ 
   Transcript 
      show: each mooseName; 
      tab; 
      show: ((each annotationInstances detect: [:ann | ann name = #Table]) 
             attributes detect: [:attr | attr name = #name]) value; 
      cr ] ] 

The whole cycle, from problem identification to obtaining the 
mapping, took somewhere around 15 minutes. After this small 
investment, the original problem became easily approachable.

�17



What to override?

The project consisted in integrating two existing legacy systems, 
SystemX and SystemY. The connection point happened through 
an interface from SystemX consisting of more than a hundred 
methods that the latter system had to implement.

�
diagram of the connections between SystemX and SystemY. Only ClientX had to be considered.

Given that the runtime scenario only involved a limited set of 
usages, it was enough to provide real implementations only for a 
handful of methods. This limited the cost of the integration 
significantly.

The team still needed to know precisely which methods had to be 
implemented. The first strategy employed by the team was to 
exercise the two systems with various functional tests, and check 
for exceptions. However, this provided no guarantee that no 
problems will appear in production. To answer the question 
completely, we queried the interface usages from ClientX:

(model allClasses entityNamed: ‘Interface’) methods select: [ :each |  
   each clientTypes anySatisfy: [ :client | 
      client name = ‘ClientX’ ] ] 

The analysis revealed that all methods were already properly 
implemented. Yet, this time there was certainty.

SystemY

SystemX

Client... serviceA()
serviceB()
…

Interface
serviceA()
serviceB()
…
serviceZ()

Default
Implementation

ClientA

ClientX

service???()

Implementation
ForClientX ...

ComponentB
...

ComponentA

�18



Later, a new version of SystemX was released and had to be 
integrated. Based on the already existing analysis, we discovered 
a missing method that was not documented and would have easily 
gone undetected.

With the new release, while testing the new version, the team also 
noticed a new exception occurring. At a closer look it seemed that 
new code contracts were introduced in other parts of the code 
together with new functionalities. Starting from the known problem, 
we reverse engineered the code and built a new set of rules. 
Running those rules revealed several more overriding needs. The 
complete effort was measured in a few hours.

Not all problems can be easily tested functionally. It is often 
significantly more effective to check them statically.

�19



Evaluating the cause of a peak problem

The users of a mission critical hospital system reported that the 
behavior of the system got significantly slower, close to unusable, 
during 3 and 4 PM. The issue transformed into a crisis, received 
immediate top management attention and solving it was given top 
priority.

After a brief evaluation the system administrators concurred that 
the issue is due to a logical error in the code, and handed over the 
problem to developers. Looking closer at the situation, something 
did not add up, and we went back to the system administrators to 
investigate further. They explained that the problem was quite 
obvious. They showed us the log files of the production installation, 
and indeed they showed that during 3 and 4 PM, thousands of 
exceptions of a certain kind of SomeStrangeError were thrown. 
They concluded that this is abnormal as they did not encountered 
these exceptions on any other installation, and hence they deemed 
it to be the root of the performance peak problem.

At a closer investigation, the SomeStrangeError came from the 
underlying middleware and it was unlikely to have anything to do 
with performance. This hypothesis was confirmed by the support 
from the middleware supplier. Knowing this, we investigated the 
log files ourselves, only this time we parsed them and extracted all 
exceptions reported by the four server nodes and plotted them on 
a chart as seen below.

�
All errors from the log files. Each circle denotes 15 minutes worth of errors.

The color of the circle denotes a distinct server node.

�20



Indeed, during 3 and 4 PM there was a spike in errors. However, 
given that some of the reported exceptions were of other nature, 
we further trimmed the chart to show only the exceptions of the 
SomeStrangeError kind.

�
The same chart as above showing only the problematic SomeStrangeError.

The picture reveals a different situation. While it is true that the 
spike in errors correlated with the performance slowdown during 3 
and 4 PM, at the same time there was another spike of errors at a 
later time in the same day that was not correlated with a 
slowdown. As a consequence, it was unlikely that the errors were 
the cause of the slowdown.

Our assessment took a couple of hours, and we used this chart to 
argue our case with the management and system administrators. 
In the end, the cause of the performance slowdown turned out to 
be an undocumented backup job that was triggered between 3 and 
4 PM.

Taking a step back, it is certainly true that the technical state of our 
production system was far from ideal, but the current problem was 
not due to that state. When the system administrators looked at 
the logs, they used a text editor which tends to focus the attention 
on the details. However, the real pattern only revealed itself when 
looked at a larger granular level through dedicated tools that 
allowed us to quickly parse, trim, and visualize the data.

�21



Chasing troublesome announcements

A while ago, we got a major problem in the browsing engine of 
Moose. The engine was designed to help developers build 
browsers easily. Once the model of a browser was defined, the 
renderer produced the actual user interface that had to be kept in 
sync with the conceptual model. The problem was that in certain 
cases, the renderer did not display correct values.

We knew that the problem was related to the communication 
mechanism between the model and the actual user interface. To 
handle the interaction between the objects from the browser model 
and the actual user interface widgets, the engine used 
announcements objects to implement an observer pattern.

Given that the communication did not happen via direct calls, it 
was difficult to get the proper overview by using only the code 
browser. Furthermore, the engine relies on a prototype-based 
design and it deep copies its model objects every time there is a 
significant interaction. Thus, a large part of the behavior is only to 
be understood at the objects level, rather than at the class level.

After several dozen days of investigations involving several 
people, we got to capture the situation in a testable scenario, but 
even so, we could not find the cause. There were simply too many 
objects around that obfuscated the situation.

At this point we changed the debugging strategy and built a 
visualization to help us understand these objects and their 
connections. On the one hand, we needed to visualize the tree 
structure of the model. This is depicted as a tree of boxes on the 
left hand side in the picture below. On the other hand, we wanted 
to see the connections between each model object and the 
corresponding rendering object. The connections are shown with 
red lines leading to the rendering objects on the right.

The picture revealed the problem nicely: there were several 
objects from the model that were linked to the same rendering 
object. For example, the second MorphicPane from the top right 
had two red edges connected to it. There should have been 
exactly one such edge for each object on the right. This meant that 
the problem was certainly related to how announcements were 
copied.

�22



�  
the initial visualization how the objects to the right are connected to more objects from the left

This reduced the scope of search to a set of about 10 methods. 
After a brief inspection, the solution boiled down to a one line fix.

�
the visualization that showed the effect of the fix

Not all problems can be captured in a useful manner from a 
functional point of view. Even if we had a failing test, we still could 
not get to the root of the problem. In our case, employing a data-
oriented route helped us identify the problem much faster. 

�23



strategic 
assessment

www.humane-assessment.com/guide/strategic

�24

http://www.humane-assessment.com/guide/strategic


Recovering data flow mappings to support a 
strategic decision

The client was developing a long lived, difficult to understand, 
embedded system that was already deployed on many remote 
sensors. The system had an interface that allowed administrators 
to modify the system configuration remotely for each sensor, but 
this interface only worked live, and the client wanted to add an 
offline mode as well.

The team identified two possible solutions, and the management 
was faced with a strategic decision:

1. Virtualize the whole system and build an interface on top of it 
that treated it like a black box, or 

2. Reverse engineer the system to build upon the existing backup 
mechanism and use it for administrative purposes as well.

Option 1 was cheaper in the short run, but it was not desired due 
to lags and brittleness. Option 2 was only possible if the backup 
model could be easily mapped on the interface model.

We were approached to help with the decision. As the key 
decisional element was related to the simplicity of the mapping, we 
focused on recovering it from the existing code.

The first step was to choose a sizable subsystem as a concrete 
example. After several quick interviews and browsing of the code, 
we identified that all classes representing the interface model 
inherited from a OuterBase class, and the backup classes 
inherited from an InnerBase class.

To find out where the actual transformation happens, we searched 
for the methods that received an OuterBase class as a parameter 
and create an InnerBase class. We quickly got to a few places, all 
of them inheriting from a MapperBase class. We double checked 
that all subclasses indeed offered similar mappings both through 
queries and by going through the comments.

At this point, in order to find patterns, we identified that we would 
benefit from a dedicated browser that would focus on the mappers 
and show the related inner and outer classes.

�25



�
a dedicated browser for investigating possible mappings 

Using this browser, we could quickly traverse many mappers and 
identify several mapping heuristics. To help the team understand 
the mappings, we encoded the heuristics into an interactive map.

�
a dedicated interactive visualization showing the mappers 

and the corresponding inner and outer concepts

This map showed that multiple outer concepts map on the same 
inner object, and this implied that it would require a significant work 
to build the original requirement. Finally, option 1 was chosen. The 
overall assessment effort was measured in a few days, and as a 
result, a strategic decisions This time, based on facts. 

�26



Supporting a large performance optimization

The client had a critical problem: a key enterprise system was 
slow. This caused great havoc among end-users, and the whole 
project was threatened with cancellation. This problem got into the 
attention of top management, and a strategic project was started.

We were appointed to lead the project. The first priority was to  
clarify the goal. All the stakeholders set at the table and agree on 
an initial set of use cases that should be made faster.

The only reliable way to make a system faster is by means of 
measurements. Once the use cases were established, we setup to 
measure the performance. The system was based on a 
combination of Java, Delphi and a proprietary scripting language, 
and a significant part of the initial problems seemed to be located 
at the interaction between the Delphi and the scripting language. 
The problem was that there existed no infrastructure for exactly 
addressing this contextual situation.

Thus, we setup to build a tool that would enable us to measure 
reliably. Given the heterogeneity of the technology, we needed a 
way to collect the dynamic measurements. This being a long lived 
enterprise system, we noticed that it came with a strong logging 
infrastructure. We decided to use it as a basis for data collection:

• We extended the logging infrastructure to handle multiple 
sources, and

• We introduced in various engines logging statement holding 
measurement information.

Once we had a log file with detailed measurement information, we 
built an importer that extracted the execution model and integrated 
it in a custom browser. Because we did not know where exactly the 
problems can come from, at first, we built a tool that presented 
highly detailed information. In particular, it linked the static model 
of the code with the dynamic information gathered from the log. 
This way we could easily query various patterns.

This first exercise required approximately 20 person-days mostly 
due to the variability present in the log files and due to ensuring 
accuracy of measurements. Once we had a first version of the tool, 
we managed to identify several issues within a few hours.

�27



�
the initial browser brought together both static and dynamic information

During this initial phase, we noticed that comparing before and 
after measurements is key to providing quick feedback. However, 
while our tool was highly detailed, it was not fast enough mainly 
due to the static analysis.

Thus, we reshaped the tool to only focus on the dynamic part and 
be able to analyze large log files within seconds. Given that the 
original infrastructure needed to parse the log files was in place, 
reshaping the tool took approximately two days.

As in any project that requires strategic decisions, the distillation of 
the technical results to non-technical people is critical to ensure 
good decisions. In our case, we presented a before and after 
measurements to show that we can reach optimizations of up to 
factor 10. This led to management confidence and to the 
expansion of the project to improve further use cases.

Some problems, such as a poor SQL statement, were easily 
solvable, but others required more domain knowledge to 
reorganize the code but still keep the same functionality. To 
address this issue, we brought in the team multiple developers as 
required by the tackled use cases. Often they would join the team 
for only one or two days.

The tool was crucial in getting this process to work. The tool was 
both simple to use and presented enough contextual information 

�28



that developers had a high rate of managing to solve the issue in a 
short amount of time. 

To make the most of the tool, we continuously evolved it with 
detections capturing patterns that we already fixed. For example, 
we noticed at some point that it is useful to provide a split of the 
SQL queries by the affected table, and we built it in. Or we saw 
that we often need to search for textual patterns in the queries, 
and we built it in.

In total, we approached more than 40 use cases and we involved a 
total of 10 developers over a period of two months. The project 
was considered a success, and it essentially took four months less 
than the original estimation.

�
an example of a performance report split by each involved script

�29



Evaluating a refactoring path

This is a story of finding a refactoring path to split a large class of 
almost 1000 methods that was central to the user interface 
framework. The class was responsible for handling the theming of 
widgets. The problem was that adding new features to the theming 
behavior was close to impossible. We needed to find a way to split 
the class. The question was how to do it and how to be confident 
that it is the right path.

To understand the problem, we first took a look inside the class. 
One way to split a class, or a module in general, is to identify 
cohesive concepts inside. To this end, the visualization below 
shows all methods and all their inter-calls. We notice that the 
graph is sparsely connected, thus not providing a useful guidance 
to find good boundaries for splitting. A similar picture came out also 
when taking the attributes of the class into account.

�
Visualizing the methods inside the class and their inter-calls.

The visualization reveals many unrelated methods.

�30



If the internal implementation does not provide meaningful leads, 
we have to look at how the class is being used. Thus, the picture 
below shows the same methods in gray, but this time also in the 
presence of a dozen significant widgets that are using the theming 
class denoted with red circles and red edges.

�
Visualization of the methods of the class in gray and

a dozen significant client classes in red.

From this picture, we noticed that the methods cluster very 
strongly around red circles leading to the conclusion that the 
theming logic should be placed closer to each individual widgets 
classes. The overall assessment took half a day, and the result 
informed a key decision which was part of a project that 
redesigned and reimplemented completely the graphical user 
interface engine over more than two years to develop.

�31



Estimating a strategic model change

The system was a strategic piece that managed the raw data in a 
large transportation company, with many other projects relying on 
the data managed by the system. It was built for over 25 years 
through a combination of Delphi and PL/SQL.

The team was faced with a dilemma: continue with the existing 
technology and design or move to a newer service-based 
approach that was closer to the rest of the eco-system. We were 
asked to help with evaluating the situation.

One near future challenge was related to a change that had to be 
accommodated in the data model. The change in question was 
due to the need of accommodating finer grained semantics in the 
data. The system relied a dozen schemas, and only one of them, 
but a central one, was supposed to be directly affected by the 
change. The question was how widely was the entities from this 
schema used throughout the system.

To answer this question, we constructed a tool that allowed us to 
reason about the complete system and especially about the 
interaction between Delphi and PL/SQL. The system was 
comprised of several sub-projects, most of which offered a client 
with a user interface that interacted directly with the database. The 
client was built out of Delphi source and forms, and both these 
artifacts could potentially utilize parts of the database either 
through dedicated components or direct SQL in strings. The PL/
SQL side used stored procedures to specify server side behavior. 
The system did not access tables directly, but only through views.

The picture below shows the overview of those relationships. Black 
circles denote Delphi projects. Colored circles show PL/SQL stored 
procedures, and colored squares represent PL/SQL views. The 
colors are given by the different schemas in the database in which 
the entity resides. The schema that was subject to change was the 
blue one. Furthermore, filled color shapes denote the entities that 
are accessed directly from Delphi.

We distinguished several issues. There are several projects that 
work with isolated schemas such as the one close to the cyan 
entities, and there are also several projects that work with multiple 
schemas and they tend to be in the center of the picture. The blue 
entities are scattered throughout the space suggesting that they 

�32



are intertwined with other parts of the system. Furthermore, the 
fact that most blue entities are filled shows that they are used 
heavily in the Delphi side.

�
Dependencies between Delphi and PL/SQL entities. 

Black circles represent Delphi projects. Colored circles are PL/SQL stored procedures. 
Colored squares are PL/SQL views.  Each color denotes a different schema.

This visualization provided a frame of reference, and we 
complemented it with several other analyses that focused on 
narrower issues and that led to both spike and strategic 
assessments. The overall effort of building the tool took about a 
person-month, which when compared with the overall investment 
in the system can be considered as insignificant. The definitive 
decision of choosing the future technology was still to be made at 
the time of the writing, but the existence of the tool and the 
resulting assessments provided the team with both confidence and 
insights that were not available before.

�33



Checking architectural conformance of an 
outsourced system

The client was in charge with developing multiple systems both 
internally and through outsourcing. Once in production, all these 
systems were ran and mostly maintained in-house. To ensure a 
better integration and limit maintenance costs, the IT-Architecture 
department published a set of architectural guidelines specifying 
multiple aspects including the technology stack, security, exception 
handling and other patterns.

All projects were urged to follow these guidelines. However, these 
guidelines were only present on paper and violations could easily 
occur in the actual implementations. We were mandated to help 
checking how systems conform to these guidelines.

The first target was provided by an outsourced system that was 
approaching the end of first release. Because the outsourcing 
development team was not available, we based our analysis on 
interviews with the architects and on analysis of the documentation 
and the source code.

Using the textual architecture guidelines, we focussed on checking 
the architectural layers and interface boundaries. Indeed, we 
validated the coarse grained architectural rules. However, when 
we queried the system in more details, we identified a number of 
guidelines violations. For example, one of the detected 
shortcomings of the application was the poor exception handling 
that violated the architectural constraints.

We used several Moose-based visualizations and applied custom 
detection strategies to highlight points of interest and irregularities 
in the code. An example of such a visualization showing violations 
over the overall system structure is displayed below.

Once the non-conforming parts were identified, we proposed 
concrete recommendations for how to improve the structure of the 
system to conform to the desired guidelines. Among others we 
also pinpointed how the logic is distributed over the system and 
how the code duplication should be refactored. The architectural 
violations were scheduled for refactoring before the application 
was to go into production.

�34



�
architectural violations highlighted on the overall class hierarchy

The overall project required less than a dozen person-days of 
effort. During the project, we did not limit our activity at pointing the 
violations, but we made it a point of identifying possible strategies 
for rectifications. This was possible because the stakeholders were 
available and could decide what parts have a deep impact on 
future maintenance and on integration with other systems.

An interesting side effect was that we also detected several 
inconsistencies in the actual guidelines. These were clarified and 
corrected by the architects. Furthermore, the toolset could be 
reused on other projects.

�35



tooling buildup

www.humane-assessment.com/guide/buildup 

�36

http://www.humane-assessment.com/guide/buildup


Evaluating the splitting of an Angular-based 
system

The company had a large system with a user interface based on 
Angular 1 and totaling more than 300’000 lines of code. The team 
had already split the server side into (micro)services, and had 
started since one year to consider splitting the client side as well 
into smaller units to match the different development paces for 
different components. Splitting the client, however, turned out to be 
more difficult than initially estimated.

To expose the size and nature of the problem, we constructed an 
infrastructure to enable custom analyses over Angular code, and 
we used it for detecting several problematic patterns. The initial 
focus of the team was to split the system into two large subparts. 
To communicate the size of the problem, we created the 
visualization below to show all components and templates from the 
system together with all their inter-dependencies. Furthermore, we 
highlighted with red and blue the two components to show that 
they are significantly intertwined.

�
All components and templates. Red and blue denote the two components.

�37



To put in perspective the implications of the picture above, let us 
consider how dependencies are defined in an Angular 1 
application. In our example, we have a moduleX.js file defining a 
someComponentA, and relying on a template defined in 
moduleX.template.html.

moduleX.js 
angular.module('moduleX', []) 
  .config(function config($routeProvider) { 
    $routeProvider.when('urlX', {  
      templateUrl: ‘moduleX.template.html’, … }) }) 
  .component(‘someComponentA’ …) 

The template defines a dependency to some-component-b.

moduleX.template.html 
<some-component-b> 
  <div> … </div> 
</some-component-b> 

some-component-b is defined in moduleY under the logical 
name of someComponentB. Furthermore, the component relies on 
a template componentB.template.html.

moduleY.js 
angular.module('moduleY', []) 
  .directive(‘someComponentB', function () { 
     return { 
       templateUrl: ‘componentB.template.html’, … } } ) 

The template includes some-component-a which corresponds to 
the someComponentA component defined above, thus leading to 
a cyclic dependency between moduleX and moduleY.

componentB.template.html 
<some-component-a …> 
  … 
</some-component-a> 

Typically, developers reason about such dependencies through 
text searches. However, in the case of Angular, this approach is 
hampered by the fact that the same component appears under two 
different looking names: a camel-case one in JavaScript sources, 
and a dash-separated one in HTML. Given the intricacies of 
dependencies seen in the visualization above, approaching them 
with a basic text search is far from being effective.

To produce the visualization we first created an importer that built 
an object model of the system. As can be observed in the example 
above, the JavaScript code specifies dependencies between 
components and templates through JavaScript strings. To provide 
a meaningful model, the tool had to take into account these 
semantics of Angular. Based on this tool, we could construct 

�38



several custom made queries and analyses to reveal impediments 
for the splitting project.

For example, an important input for finding the splitting path is the 
knowledge of which parts of the system is one component 
requiring. The following query answer this question for the red 
subpart:

red := (model allAngularComponents select: #isMRed),  
       (model allAngularTemplates select: #isMRed). 
all := red flatCollectAsSet: [:each |  
       each withDeepCollect: #includedComponentsAndTemplates ]. 
all \ red 

Some of these returning components and templates residing in 
common modules might be used in either the red or the blue 
subpart. Knowing where this happens can inform the splitting of 
external modules. The picture below shows the case of such a 
module. In the first pane we select all components coming from a 
nominated module. In the second pane we visualize all 
dependencies between these components, and highlight with red 
and blue the components that are used from the red and blue 
subparts. We can see that some are used in both red and blue, 
some only in red, and some are not used in either of them.

�
Investigating all components belonging to a common parent module.

Another kind of dependencies comes from how Angular allows one 
to define and inject services and other variables throughout the 
code. For example, the code below shows a moduleZ defining a 
ServiceA that relies on ServiceB.

moduleZ.js 
angular.module('moduleX', []) 
   .factory(‘ServiceA', function(ServiceB) { … }) 

�39



Given that the two sub-parts were supposed to be top level, none 
of the services defined in them should be used outside of their 
boundaries. The following query reveals all defined variables that 
are defined in the red subpart, but are used from outside of this 
part:

self allAngularInjectables select: [ :each |  
  each isMRed and: [  
  each usedByInjectables anySatisfy: [ :user | user isMRed not] ] ]. 

The effort of constructing the initial infrastructure that allowed us to 
answer relevant questions took approximately 8 days. This was 
based on an out-of-the-box version of Moose that also comes with 
a basic JavaScript parser but that has no knowledge about 
Angular. The main effort was invested in understanding all 
variations and constructs that Angular provides.

Taking a step back, the cost of 8 days is close to irrelevant 
especially when compared with the overall cost of having a team of 
three dozen people not acting on a strategic need for one year.

�40



Browsing a configuration system

The client approached us with the following problem: it became 
much too expensive and risky to extend the system. The system 
was made out of several hundred subsystems, each being written 
in Java. These subsystems were interconnected through dedicated 
interfaces. When asked, the client told us that there are some 
configuration files that describe how the connection should 
happen. He also mentioned that the configurations were using a 
declarative XML format.

Upon further investigation, we identified that the overall system 
was indeed based on a custom engine that was put together using 
custom configuration files. Only there were more than 1000 such 
files, and they were describing more than simple connections. We 
also discovered that a scripting language was used to augment the 
information from the XML with extra constraints.

The problem was foremost one of perception: management 
believed the system to be modular and simple to configure. Yet, 
there was no formal description of the structure of the XML, and 
when we asked the technical team, they had a hard time 
explaining what each part of the XML meant.

We made it our goal to tackle this essential problem by offering an 
analysis tool that would help both management and the technical 
team to obtain an overview of the system.

The prerequisite for any data analysis is the identification of the 
structure for the data. Thus, as a first step, we analyzed manually 
several configuration files with the aim of capturing the structure in 
a diagram. The diagram below shows the anonymized result of the 
configuration analysis. The diagram helped to communicate with 
the client, and at the same time it served as a blueprint for the 
actual implementation of the model.

Afterwards, we created the importer that the configuration files. An 
important challenge was posed by the unification of data: because 
the system was developed over a decade, there were multiple 
ways of expressing the same information, and often these 
variations were all present in the same file.

�41



Our importing solution needed to deal with all these differences. To 
ensure both a speedy implementation and an accurate one, we 
used two strategies:

• We worked closely with the technical team to identify the 
meaning between various mappings. We would take examples 
from the configurations and they would formulate hypotheses 
related to what these examples meant in the system.

• We encoded the hypotheses in queries, and ran them against 
the complete set of configuration files. When a hypothesis was 
satisfied, we continue to build on it. When we encountered 
mismatches between a hypothesis and the configurations, we 
looked at the exceptions and went back to the technical team.

A further challenge was posed by importing the dependency 
information out of the adjacent scripts. While the XML syntax was 
clear, the syntax of the scripting language was less so. One 
approach was to build a complete parser for the language, but as 
our main aim was to build evidence of where the strategic problem 
comes from, we searched a solution that allowed us to extract 
dependency information without understanding the whole script. 
Indeed, we could identify a pattern that could easily be encoded in 
a partial parser.

Using this approach we were able to build a first consistent model 
that had enough coverage to start performing actual analyses. At 
this stage, we could quickly see where the original problem came 
from: due to a lack of organization, there were simply too many 
dependencies. The visualization below depicts each system as a 

�42



box and each dependency through a line. The boxes are laid out 
such that the more a component was used, the more it appeared 
at the bottom.

�
an overview of all configuration dependencies

To ease the communication and further exploration, we augmented 
the view with metrics and we integrated all of these into an 
interactive browser.

a custom interactive browser for understanding configuration dependencies

The browser revealed the shape of the system for the first time, 
and the developers could identify multiple unexpected 
dependencies. Furthermore, the tool provided the evidence for 
why it was expensive to change the system.

�43



Supporting multiple assessments of a 
system written in a proprietary language

The client had a mission-critical long living system written in 
multiple languages. The system offered a rich user interface built 
through many interconnected forms. Furthermore, an important 
feature of the system consisted in a proprietary language that 
could be used to customize or to create new modules.

Over more than a decade of development, the environment 
accumulated a large amount sources for multiple projects. While 
the proprietary tools offered some support for developing in this 
language, they offered no analysis infrastructure and because of 
that mistakes could easily occur.

We were mandated to create a dedicated infrastructure for 
supporting the assessment of programs written in this language 
and to relate them to the overall forms structure.

The lack of documentation about the structure of language posed 
a significant challenge. We started with a reverse engineering 
effort and we adopted an iterative approach through which we 
combined:

• Multiple developer interviews for recovering the meaning of 
programming instructions,

• Testing to check the accuracy of the produced parsers and 
importers, and

• Running variations of example scripts against the real system.

After two dozen days of effort, we produced a working version of 
the importer that could be used to produce a picture of the 
systems. The importer was based on several custom-made 
parsers built on top of the parsing infrastructure of Moose.

Using this importer, the team could start encoding their own 
concerns and ease maintenance. For example, applying the 
checkers on the first installation revealed more than 60 syntactic 
errors in production code. These errors were ignored by the 
runtime interpreter, but they were the source of great confusion for 
developers because something that appeared to be right was 
mysteriously not executed. Given that many scripts could easily 
have thousands of lines of code, the problem was significant. This 

�44



detection alone made the original buildup investment more than 
worth it. Thus, the team adopted the process of continuous 
assessment and checked these concerns on a regular basis for 
several projects.

Once the team became more confident in using analyses, we 
created several other tools on top of the code model to support 
various scenarios. For example, we create a browser that allowed 
the developer to search and navigate through all scripts using one 
single interface - as opposed to having to click on visual form 
builders multiple times to get to a script. Furthermore, the browser 
provided extra information about the call graph and the state of the 
script which brought an extra level of transparency.

�
a custom browser for manipulating scripts

Another byproduct of this project consisted in a set of interactive 
browsers and visualizations meant to ease the dialogue between 
the technical and non-technical people concerning the status of the 
systems. In one case, a product owner needed to build the case 
for obtaining more refactoring budget. He knew that there were 
problems in the system, but he did not know how to present it to 
top management. To help with this problem, we constructed in half 
a day a dedicated browser that showed the dependencies in the 
system. This was possible precisely because the infrastructure of 
obtaining the code model was already present.

An example of a part of the system can be seen below. The 
visualization was interactive and it showed two types of modules 

�45



colored in two shades of gray, and two shades of blue depending 
on selection. To highlight the dependencies, the browser 
highlighted in blue the modules that were depending on the current 
selection. The product owner went on in the management meeting 
and said: "In theory, our system is built as a tree of dependencies. 
In reality, it looks different. This mismatch needs to be rectified." 
The CEO even clicked through the system asking for further 
clarifications. Finally, the budget was allocated.

an interactive browser showing dependencies between modules

On another occasion, the client needed to merge two existing 
installations into a single one. The challenges were multiple fold. 
One of them was to identify the differences between the forms and 
scripts. At first, the developers started to investigate by using the 
standard text based tools, but it soon became apparent that this 
route has little chances of success given the sheer size and 
intricacies of the scripts and forms. The developers required a tool 
to ease their investigation task.

Scripts were indeed pure text and the global ones were located in 
separated files. Thus for those scripts it would have been enough 
to simply use a text diffing tool. However, many of the scripts were 
located inside the forms, and because these forms had 
complicated formats that even encoded the embedded scripts, 

�46



generic tools were rendered useless. To alleviate the problem, we 
constructed a dedicated browser for diffing the two code bases. 

The screenshot below shows a glimpse of the tool. Given that the 
infrastructure for analyzing one version existed, the cost of the new 
tool was measured in a few days. The tool allowed the developers 
to go through the entire system within a day.

�
a dedicated browser showing detailed differences between two code bases 

In the same project, the team identified another problem: merging 
the two systems also implied that the database ids for various 
entries needed to be modified as well. The question was: how will 
this change affect the scripts. We needed to find all cases of using 
explicit ids in the scripts. However, given that the scripting 
language was a low level one, and that the code base was filled 
with numbers of all sorts, there was no way to automatically 
identify where the problematic ids were being used simply by 
looking for the numbers.

To solve the problem, we built another dedicated browser that 
employed several heuristics to provide hints of code zones that 
could be problematic. Building the browser required less than a 
day, and going through all locations required just a few hours. To 
make things even easier, the browser also provided a simple way 
to annotate the locations and to produce a report of the 
annotations. This list was then used for fixing the problematic 
places during the migration. This was a strategic problem that 

�47



could essentially be answered with an insignificant amount of 
effort.

�
a dedicated browser showing direct usages of ids for given variables

These are but of few of the use cases served by the original 
infrastructure. The original investment in a tooling buildup paid off 
multiple times.

�48



Identifying missing translations

The system had to work in a multi language environment, and for 
this purpose it worked with a typical Java internationalization 
framework that relied on translations being placed in files having a 
suffix for each language. A sample could look like: 
sample_en.properties, sample_de.properties ...

There were multiple thousands of such property items and they 
had to be translated in three languages. The properties were 
added and removed by engineers during the regular development 
work. Afterwards, the files were processed by the translation team 
to ensure the quality of the translation.

However, the translation team did not know what were the required 
properties to be translated, and even if they spent a significant 
amount of time manually checking properties, often translations 
were missing.

To solve the issue, we built a browser that revealed the missing 
translations. The tool relied on several heuristics, but essentially, it 
collected all properties and checked to see that all language 
variations have entries for each of them. The effort took around 
two days and it was enough to transform the situation into a 
manageable one.

�
a browser that showed in red all files and properties that were missing translations

�49


