
www.humane-assessment.com

humane
assessment

on ca
rds

the m
issing

meth
od

for m
aking

softw
are

engine
ering

decisi
ons

http://www.humane-assessment.com
http://www.humane-assessment.com

Humane assessment is a method for
making software engineering decisions.
It can be used for steering agile
architecture, for managing technical
debt, for guiding migrations or for
splitting monolithic applications.

�2

humane |(h)yoōˈmān|
adjective

intended to have a civilizing or refining effect on people

assessment |əˈsesmənt|
noun

the process of understanding a given situation to
support decision making

�3

context

processes

method
assessment

development

organization

daily

spike

strategic facilitator

tooling

craft
analysis

decision

buildup

throwaway

stakeholder

�4

context

�5

everyone
makes decisions all the time

Managers decide about the overall
development. Architects decide the
broad technical direction. Developers
decide daily the course of the
implementation.

You might not regard these as decisions,
but they are. These decisions are similar
in that they all require accurate
information about the state of the
system. And they happen all the time.

engineermanager

architect

�6

what’s in a decision?

What does it take
to implement this?

Is the architecture preserved
after this change?

How do I perform
this change?

�7

example

the process of understanding a
situation surrounding a software
system to support decision making

what isassessment?

Assessment is a human
activity. Its goal is to produce
enough knowledge to lead to
a decision that leads to action.
Only then it is useful.

The input is a situation that typically
involves variables scattered across
many bits of data. Even a medium-
size software system presents
millions of such bits.

decisiondata

�8

decision
assessment

development

assessment provides the
basis for development

�9

Assessment aims to produce
knowledge that leads to a decision
that leads to action. When it comes
to large systems and data, it has to
rely on reverse engineering to scale.
But ultimately, it is a human activity.

Reverse engineering and
software analysis aim to create
representations of the system
at a higher level of abstraction.
They are mostly a tool issue.

assessment = analysis + decision making

decisionanalyses modelsdata

assessment

reverse engineering

�10

What is the cost of migrating to a new
technology?

Can we build a new version on top of the
existing system?

What parts of the system need refactoring
most prominently?

What parts of the system depend on other
parts that should be replaced?

Does the system conform to the desired
architecture?

What causes the performance problems?

assessment questions

What does it take to split the system into
separate services?

Are all remote calls to the server error handled
on the client side?

Are all scripting properties properly initialized in
the settings?

Where is the time lost during execution: script,
code or SQL?

Or, from what parts of the system is the
persistency manager called, outside of the
dedicated components, tests, and generated
code?

example

�11

size
is the challenge

Even a medium size system contains millions of
details. You handle this size by retaining what you
think matters. You will never grasp the complete
picture in your head, even though you might think
you do. That is why data must become part of the
conversation.

�12

assessment

development

assessment is
pervasive

When we think of software development, we
think of the active part of building the system.
However, several studies show that software
engineers spend up to 50% of the time
assessing the state of the system to know
what to do next.

These are the only the direct costs of
assessment. The indirect costs can be seen
in the consequences of the made decisions.

Assessment is important and pervasive.

�13

Forward engineering receives much attention
in various forms such as patterns and
technology. While assessment can be equally
expensive, it is currently dealt with implicitly,
in an ad-hoc way. This needs to change.

The challenge is significant because it
requires a paradigm shift. The promise lies in
the costs that can be decreased when going
from ad-hoc to structured.

The good news is that the budget is already
allocated. You are already paying for it.

assessment

development

technology

...

?

patterns

idioms

�14

assessment
challenge

assessment is
the elephant

Even though it is both pervasive
and expensive, it is not an
explicit concern. Everyone pays
for it, but nobody really talks
about it.

It’s the elephant in the software
development room.

�15

Me: Do you agree that you spend most of your time reading code?

Developer: Hmm. Yes.

Me: Ok. When was the last time you talked about it?

Developer: About what?

Me: About how you read code?

Developer: Talk about reading code … I don’t remember … never?

Me: In fact, nobody really talks about it. But, don’t you find it
strange that we, as an industry, are spending most of our budget
on something we never talk about?

Developer: Hmm. Indeed, I never thought of it in this way.

storya code reading
conversation

�16

value is always
specific

shared technology

project specific

value

The main value of your project comes from
the specifics of the project, and not from the
shared infrastructure, such as the language
or the framework used.

That is why using generic checks, such as
off-the-shelf static analyses, has a limited
impact.

Make sure that you check what is
important, and not just what is simply easy.

�17

assessment

development

assessment is a
discipline

tailored

explicit

educated

must be

Assessment must be approached
explicitly during the development
process. It is too important to do
otherwise. Only by making it
explicit can it be optimized.

Software systems are complex and
present many contextual problems
that can only be answered with
appropriately tailored solutions.

The ability to assess a situation is a
skill. Like any skill, it needs to and
can be educated.

�18

method

�19

the method

hypothesize
existing
analysis?

craft
analysis

apply
analysis

interpret
results

confident?

For the assessment effort to
be useful, it must result in a
definite path of action.

Drive the assessment effort
by formulating and refining
hypotheses explicitly.

Custom problems require
custom solutions. To be
effective, it is critical to
craft an analysis tool for it.

Regardless how smart
an analysis tool is, it is
the human that must
interpret the results to
decide what to do next.

no

yes

ye

no

�20

generic

automaticmanual

tailored

why
humane?

A manual analysis does not
scale because systems are too
large. A generic analysis is not
useful because the value is in
the context.

As humans, we need
automatic support, but we
need it to be tailored to the
context. This is the humane
solution.

�21

processes

�22

assessment
precedes action
Agile development replaces upfront
design with the ability to react to new
situations. But, to make the right
decision we need to be able to assess
the situation accurately. Thus, we
need to integrate assessment deep
into the process.

Decisions are made
all the time. They can
be course grained In
between iterations,
or fine grained on a
daily basis.

Projects typically build on top of
existing software. Thus, we first need
to understand what we are building on.

Often, before placing a product into
production a final check needs to ensure
that certain characteristics are met.

�23

When a concern needs to be
ensured on a long term, its
assessment needs to be
integrated deep into the
development effort. Whether
large or small, through the
daily assessment process
these concerns get captured
and distilled into immediate
actions.

daily
assessment

strategic
assessment

spike
assessment

continuous one-time

narrow

broad
When the concern is larger
in scope and the decision
requires a thorough
investigation we need a
more structured and detailed
strategic assessment.

Some problems appear
singularly, they have a
narrow scope, and they need
to be dealt fast with. Through
spike assessment, the
assessor uses throwaway
analysis tools to gather facts
fast and to support on the
spot decision making.

assessment in theprocess

�24

code has anemergent structure

�25

The architecture of a software system is
not a document, but the reality from the
system. It is the result of multiple
developers working at the same time and
committing code concomitantly in different
corners of the system. It is the result of
following the constraints posed by the
system’s current state. It is the result of the
social interactions between stakeholders. It
is the result of what is possible with the
underlying languages and technologies. It
is the result of skills. It is the result of taste.
It is the result of dreams.

In short, architecture is an emergent
property created by multiple agents
interacting constantly with each other. It
cannot be fully controlled, but it can be
steered.

1

2

3

basics of steering
agile architecture

know where you are

know where you
want to go to

ensure you
go where you

want to

�26

daily
assessment

Daily assessment relies on
having the team continuously
identify, check and fix
relevant technical concerns.

identify
concern

agree?

craft
checker

discuss
results

small
task?

solve
now

plan for
later

yes

no

yes no

�27

story

The client was responsible for the
development of multiple software projects.
The teams were following Scrum. As the size
of the projects increased, they needed a
means to control the emerging design. We
introduced the daily assessment routine.

Each day, new concerns were raised by team
members. After the regular Scrum stand-up,
developers met in an assessment stand-up to
discuss the validity of the concerns and
identify potential improvements.

If the cost of fixing a concern was larger than
15 minutes, it got either decomposed or
added to the project backlog. If it took less
than 15 minutes, it got pinned to the board
and became a task for the day. After a couple
of months, the architecture got documented
and followed by everyone.

daily assessment
in scrum projects

to do in progress done

story
task 1

story
task 2

concern
task A

concern
task B

story
task 4

story
task 3

�28

15 minutes

15 minutes is magical.

First, everyone has 15 minutes. Second, 15
minutes is also long enough to actually do
something with it: it is about the time it takes for a
good stand-up meeting; it is about the time it
takes to have a focused brainstorming session; it
is also about the amount of time it takes to
perform, test and commit a simple refactoring.

15 minutes is a truly magical pattern. That is why
daily assessment can benefit from it.

�29

pattern

start from an
empty report

report

Do not start from a report
containing hundreds of rules that
might or might not be relevant for
your project. Start from an empty
one and grow it as the project
evolves with only rules that you
have a need for. In this way, the
report will only provide information
that is valuable for your context.

�30

pattern

daily assessment standup

One critical part of daily assessment is to
get the whole technical team involved in
architectural decision making. One way to
implement that is through a standup that is
separate from the typical daily standup.

First, this standup only includes technical
people to enable highly technical
discussions. Second, any considered
concern must have a concrete stakeholder
and evidence to support the claim. Third,
the goal is to reach an agreement and
decide a concrete path to action.

�31

pattern

spike
assessment

focus

Spike assessment
addresses technical
problems that require
technical answers fast.

approximate
use

throwaways

It’s not spike if it’s
not short and
focused.

The main goal is to
find a satisfying
answer.

Build throwaway
analysis tools. Use
them aggressively.

explore

Ask data about the
cause. Explore.
Experiment.

�32

story

The Moose platform ships with an engine for
building browsers. For a while we had a serious
bug in the rendering code that we could not
track down. After several attempts and many
hours of effort, we were able to capture the
problem in a test. However, we still did not
know where the issue came from. Due to the
engine depending on deep copying of objects,
using the debugger was close to useless.

We then approached the problem differently:
we built an interactive visualization to expose
the problem. An example can be seen to the
right. Without going into details, there should
have been no two red lines getting into the
same node from the right. As there were, we
confirmed our original suspicion. Knowing the
exact nodes that generated the problems lead
us to find the solution in a matter of minutes.
The fix was exactly one line of code.

chasing a tough bug

�33

strategic
assessment

Strategic assessment tackles problems that have a broad
scope and that are typically not formulated in technical terms.
The process focuses on involving the stakeholders, and on
refining the questions until they get answerable with hard facts.

set
goal

confident?
no

yes

spike

get
data

compile

spikespike

�34

story

The system had a history of more than a decade of
development using multiple technologies. A set of
functionalities was reported to have performance
issues. This finding had an impact on the strategic
decision to open the system for more users.

To assess the effort required to solve the situation,
we first instrumented the runtime to produce more
detailed logs that included information about the
executed functions and the SQL statements.

These logs were parsed to recover the execution
traces. The traces were related to the static
structure so that we could locate the problematic
cases in the source code.

All analyses were integrated in a browser that
produced live reports and helped us identify
multiple problems interactively. As a result, a team
got assembled and improved the situation.

strategic assessment of
performance problems

code logs

unified
model

interactive
analyses

�35

splitting the monolith:
a multifaceted assessment problem

One problem that requires deep understanding of the system is that of splitting a monolithic application into
(micro)services. Such a monolith is often poorly understood and its inner pieces have unclear boundaries.

Splitting a monolith is typically a long term project involving strategic assessment, piecemeal changes guided
through daily assessment, and multiple fine grained spike assessments.

example

�36

organization

�37

assessment in the
organization

To be effective assessment must
be recognized explicitly as an
activity during the development
process. But, assessment also
requires dedicated skills.

For this reason, assessment
must also be explicitly captured
through roles and responsibilities
in the organization.

facilitatorstakeholder

�38

assessment
stakeholder

The stakeholder is the driver of the
assessment process. He has to solve a
problem related to the system, and is the
one responsible for the end decision.

�39

assessment
facilitator

Assessment is a too important
engineering skill to not have in-
house when developing software
systems. To ensure its presence
we have to have an explicit role:
the assessment facilitator.

The job of the facilitator is not to
dictate what is right and what is
wrong. His job is to support the
stakeholders in their assessments.
In the end, it is the stakeholders
that know what is and is not
important in their context.

stakeholder

facilitator

�40

assessment
department

integrated
in project teams

dedicated department

Facilitators must work together with the
software project teams. However, in
most cases it is important to form an
explicit assessment department that
builds its own culture and learns from
past experiences.

The assessment department is
essentially a software team specialized
in the domain of analysis with the clients
being the rest of the software teams.

�41

pattern

empowerment
not enforcement

Traditionally, assessment is positioned as a process
of enforcing rules by an authority external to the
actual development. This authority resembles a
police that is in charge with controlling and making
sure things conform to the standard. The problem is
that enforcement induces a negative feedback loop,
and this leads to lack of cooperation from those that
are supposed to benefit from the service.

+-

The goal of assessment is decision making. The
main actor is the one that has to make a decision.
It is him that should be benefit from assessment.
Thus, assessment is best seen as a service.
Positioning assessment as a support service,
rather than a controlling one, generates a positive
feedback loop. This leads to better decisions.

�42

present
your assessment

As long as you do not work alone, decisions must be shared. To
convince others of your finding, you first have to let them know.
Presenting is key.

And the act of presenting does not have to match the path of
finding. In fact, it most often isn’t the most efficient approach.

�43

stakeholder & facilitator
are roles

The stakeholder and the
facilitator are roles. They can be
played by the same person.

�44

functional roles

assessment roles

assessment roles
complement functional roles

�45

adopting
assessment

specify

act

drive

identify

craft

facilitate

Stakeholders must learn to specify
concerns explicitly. The second
step is to learn how to transform
the analysis output into actions.
Finally, they have to learn how to
initiate and drive the process.

Facilitators have to learn to work
with stakeholders to identify
valuable concerns. They have to
learn to craft tools fast. Finally, they
have to learn to facilitate and ensure
that stakeholders make a decision.

�46

assessment
in scrum

daily
assessment

spike
assessment

assessment
tasks

assessment-aided
planning

strategic
assessment

�47

The planning game is an agile technique that
brings together what the product owner wants,
with what the team can do.

When the affected system is already significantly
developed, the ability of the team to implement
new stories is highly dependent on what the
system allows the team to do. You simply cannot
ignore the system.

For a constructive planning, you need to make
the system part of the conversation. Appoint a
facilitator to quickly check things in the system
while hypothesis are being thrown across the
room.

assessment-aided
planning

�48

tooling

�49

our tools
shape us

Marshall McLuhan warned us since the
previous century that we shape our tools and
thereafter our tools shape us. It follows that we
should be choose carefully the tools we expose
ourselves to because they determine the way
we understand problems.

To do this properly, we first have to understand
the characteristics that those tools should offer.

�50

Software has no shape. Better yet, it has no
one shape. It has many, and these depend on
the tools through which we look at our
software.

A typical system is built on top of multiple
distinct pieces of technology. The way we deal
with a problem somewhere in that pile of code
depends on the tools we have.

Tools are essential in software development.

�51

tools
are essential

crafting tools
economics

The essence of humane assessment
consists of using dedicated tools for
custom problems. Using the right tool
will always outperform manual work.
The key is to have the right tool. craft tool use

manual checks

Crafting a dedicated tool does not have
to be expensive. The cost decreases
significantly with the appropriate skill,
and the technical infrastructure.

skill infrastructure

cost depends on

�52

analysis cost vs
usefulness

Often, building the perfect analysis
implies a significant effort and resources.
That is because data is never clean.
However, when you perceive analysis as
an assessment tool, the goal transforms
from getting the exact automatic result to
reducing the scope for manual
interpretation. From this point of view,
good enough can become cheap.

cost

usefulness

good enough

�53

easy analysis with
conventions

Conventions and standards are at the
heart of quality assurance. Automatic
detections can be used to ensure them.

detection convention

ensures

eases

When a tool costs too much, it is often
because the system does not have a
clear structure. Instill conventions to get
the implementation of the analysis cheap.

�54

story

During the introduction of daily assessment in
a Scrum team, we noticed that the rules were
difficult to capture in automatic analyses. At a
closer look, the issues stemmed from the
difficulty of locating concepts and
components in the source code due to a lack
of conventions for naming packages and
classes.

For example, concerns like “component A
should only be used by component B” were
difficult to implement simply because there
was no easy way to locate A and B.

We created concerns for controlling the
naming conventions. Once the conventions
were in place, “component A should only be
used by component B” became trivial.

conventions to the rescue

�55

story

One developer raised the concern that his
component must be used only through the
intended public API. The main reason was to
ensure that she can extend and refactor the
internals of the component. As a
consequence, a checker was created to
detect all the violations, and through the daily
assessment process, the team went through
all the calls that were using the internal
interfaces.

However, one of the calls could not leave with
the intended public API because of
performance issues. As such, the team
agreed that this was a reasonable exception
to the rule, and it was explicitly marked in the
concern.

the good exception

API

�56

analyses modelsdata

analysis
anatomy

To interpret an analysis, you need to know
what the input data is, and what exactly the
analysis algorithm is doing.

control to interpret

Conceptually, an analysis has an input set of
data, an algorithm, and an output model
which holds a representation of the original
data. This applies to any kind of analysis from
a simple metric to a complex visualization.

�57

introspection

navigation

selection

presentation

basic analysis actions

Given an entity, retrieve its
properties

Given an entity, retrieve other
entities that are related

Given a group of entities, retrieve
those that match a criterion

Given a group of entities, arrange
them according to a criterion

�58

example

Consider the Java class to the right.

How many methods are there? 7. But, is
a constructor a method? If the metric
computation does not consider it as a
method, we get only 6. What about
accessors? Are they to be considered as
methods? If no, we have only 4. Do we
count the private methods? If not, we get
3. Finally, equals() is expected by default,
so we might as well not consider it a real
method. Perhaps the result is 2.

How many methods are there? It
depends on what the metric captures.

Now, let us turn consider a report that
says a class has 70 methods. What does
it mean? You have to know what the
actual computation does.

what’s in a metric? example

public class Library {

 List books;

 public Library() {…}

 public void addBook(Book b) {…}

 public void removeBook(Book b) {…}

 private boolean hasBook(Book b) {…}

 protected List getBooks() {…}

 protected void setBooks(List books) {…}

 public boolean equals(…) {…}

}

constructor

accessors

default

private

�59

x := compute(y)

what is a parser example

parser

Assignment

Variable (x)

Call (compute)

Parameter (y)

Variable (y)

A parser is a magic machinery that transforms some input
format into an internal representation. Often the input is
formed by code written in a programming language, and the
output is an abstract syntax tree. Parsing is usually the first
step in building a model useful for high-level analysis.

�60

what is a
visualization example

A visualization is an analysis that
produces picture that reveals the inner
structure of the data.

Visualizations are often confused with
visual languages. While both rely on the
eye as a receptor, they differ in intent:
visual languages are meant as tools for
communicating ideas, while visualizations
are tools for discovering them from
unknown data.

�61

what is a
browser example

A browser is a user interface whose purpose is
to facilitate the manipulation of models. At its
core, the browser offers means to navigate
through models, and to present their different
facets.

For example, a file browser let’s you browse
the file system. The code browser let’s you
browse the code. These tools make you
productive because they match the workflow.
Any workflow should benefits from it.

�62

software
is data

Source code is not text. Logs are not text.
Configuration specifications are not text either. They
are all data. It’s just takes you to look at them as such.

�63

systems are
heterogenous

build
scripts

versions

configurations

code in multiple
languages & technologies

runtime
info

documentation

issue
reports

A thorough assessment must take into
account the multidimensionality of
modern systems. It’s almost never just
source code written in a single language.

persistency

�64

engine

analysis

dedicated
engine

tooling
buildup

Assessment requires analysis tools
tailored to the context of the problem and
of the system at hand. Generic engines
offer reusable high level support to make
tool building effective.

Yet, often there are less generic pieces
that are still repeatedly needed in various
analysis contexts.

When reuse is needed, dedicate a buildup
phase to construct this dedicated engine
that is reusable in the given context.

There are several cases for when
such reusable components are
needed.

An example is a dedicated importer
for a proprietary language or data
format that can be reused in
several language-specific analyses.

Another example consists in
building a model and a query
interface for a specific set of
problems.

�65

story

The client had a system written in multiple
languages including a proprietary scripting
language and several formats for other data. To
enable engineers to assess the state of the
system, we allocated an explicit project to build up
a dedicated infrastructure.

The process was made more difficult by the non-
existence of an explicit grammar for the scripting
language or for the other file formats. The first step
was to reverse engineer these grammars. This
was achieved by taking a large body of examples
and iteratively constructing parsers that consumed
all examples.

We used these parser to construct internal
abstract syntax trees. Out of these we created an
importer to produce a unified high level model.
This model was then used as a basis for several
assessment projects and tools.

tooling buildup for a
proprietary language

abstract
syntax
trees

sources

model

importer

�66

throwaway
analysis tool

Crafting custom analysis tools should be cheap. Not fancy analyses.
Effective ones. Creating effective analyses should be so cheap that it
should still be profitable to use the crafted tool only once and throw it
away afterwards.

All we need is the right infrastructure. And, the right skill.

craft
tool use

throw
away

�67

educate
your requirements

Be selective when choosing your tools.

When faced with a new tool, do not stop at what
it can do out of the box. Get to understand your
context and formulate your own requirements.
Ask in what ways you can tailor the tool. It is the
engine behind the tool that is the most
important, because your problems are specific
and they deserve a tailored analysis.

�68

models
are central

system

model

meta
model

represents

described by

Models are central to the analysis workflow.
A model is a simplification of the system
under analysis, and its goal is to help answer
questions about this system.

To reason about a model we need to know its
structure. This is the responsibility of the
meta-model. The effectiveness of a model
stems from the ability of the meta-model to
offer the information needed for the desired
analysis.

�69

analysis
must be iterative

models analyses

Assessment is seldom a static game. An
effective assessment is most often carried
out as a conversation with data. Thus, an
analysis tool must support an iterative
workflow that enables you to refine your
hypothesis as you drill in the data.

�70

engines
enable tailoring

An analysis transforms an input data into an
output model. The value of an analysis
comes from the answers provided by the
resulting model.

An analysis engine is a piece of software
whose output is an analysis tool. The goal of
an engine is to enable the creation of custom
analyses.

Thus, an engine is to be judged from two
points of view: the kinds of analysis it lets you
build, and the costs associated with creating
a new analysis. Engines are instrumental in
making humane assessment possible. engine

analyses modelsdata

�71

importers modelsdata

importers
handle raw data

An example of an importer can be a
parser that takes source code and
produces a high level model.

Another example can be a processor of
log files that builds an execution model.

An importer is an analysis that
takes raw data and transforms
it into a model that is more
suitable for analysis.

�72

importer model

select relevant parts custom visualization

visualization engine

end result

sources

a simple analysis
decomposed example

Through this analysis, we
import the sources, we
select a subset of relevant
parts, and we show them
using a custom visualization.
The entire workflow is
supported by Moose.

query engine
�73

www.moosetechnology.org

Moose offers several generic
engines that enable the analyst to
craft new tools fast and cheap.

engines

importers models analysesdata

Moose is a platform for software and data
analysis that makes assessment practical.

Various kinds of data in
various formats can be
imported into Moose, such
as software systems written
in Java or C++.

Moose offers various
tools that deal with
metrics, clustering,
querying, visualizing,
and interactive
browsing. A key
concept is that the
results of any analyses
are fed back into the
model and are
available for further
analysis.

�74

http://www.moosetechnology.org
http://www.moosetechnology.org

beyond tools

�75

beyond
tools

Tools are important, but assessment is ultimately a human activity.

�76

assessment > code metrics

assessment

analysis

code metrics

�77

metrics

inner
radar

To find solutions, you first need to formulate the
problem. To formulate the problem you first need
to be able to identify it. To identify it, you need a
radar. An inner radar. You cannot buy such a
radar, but you can build and train your own.

�78

story

The client had a system in which one central
class seemed to incorporate most of the
system knowledge. The class had some
5000 lines of code.

We noticed that there seemed to be too
many somewhat similar if statements. We
ran a duplication analysis, and indeed, large
chunks of code were duplicated multiple
times, and they included long lists of if
statements. In the end, the solution was to
introduce a state design pattern.

The client got excited at the prospect, but we
announced that the root of the problem is
the broken radar: someone opened the
class, entered line number 5000, committed
the code, and then slept well at night.

the root
of trouble

1
2
3
...

4998
4999

5000

�79

analysis

design

implementation

testing

assessment

10%

10%

30%

30%

20%

the end
goal

Assessment is a pervasive
activity that must be
captured explicitly during a
software project.

For the state of practice to
change, we need to
acknowledge the existence
of assessment and plan for
it explicitly.

management spreadsheet

�80

Stakeholder (Manager/PO) Stakeholder (Developer)

FacilitatorStakeholder (Architect)

DecisionProblem

Data Model

Analysis engineAnalysis

(c) Tudor Gîrba
tudorgirba.com

http://www.tudorgirba.com
http://www.tudorgirba.com

